The region\({\rm{D}}\)is the triangle enclosed by lines \({\rm{x = 0, y = x, 2 x + y = 6}}\)
The density function is \(\rho (x,y) = {x^2}\)
The total mass of lamina is,
Integrate with respect to\(y\)and apply the corresponding limit,
\(\begin{aligned}{c}m = \int_0^2 {{x^2}} (y)_x^{6 - 2x}dx\\ = \int_0^2 {{x^2}} (6 - 2x - x)dx\\ = \int_0^2 {{x^2}} (6 - 3x)dx\\ = \int_0^2 {\left( {6{x^2} - 3{x^3}} \right)} dx\end{aligned}\)
Integrate with respect to \(x\)and apply the corresponding limit,
\(\begin{aligned}{c}m = \left( {\frac{{6{x^3}}}{3} - \frac{{3{x^4}}}{4}} \right)_0^2\\ = \left( {2{x^3} - \frac{{3{x^4}}}{4}} \right)_0^2\\ = \left( {2\left( {{2^3}} \right) - \frac{{3{{(2)}^4}}}{4}} \right)\\ = (16 - 12)\\ = 4\end{aligned}\)
In order to get the coordinates of the center of the mass, find\(\bar x{\rm{ and }}\bar y{\rm{. }}\)
Integrate with respect to \(x\)and apply the corresponding limit,
\(\begin{aligned}{c}\bar x = \frac{1}{4}\int_0^2 {\left( {6{x^4} - 3{x^4}} \right)} dx\\ = \frac{1}{4}\left( {\frac{{6{x^4}}}{4} - \frac{{3{x^5}}}{5}} \right)_0^2\\ = \frac{1}{4}\left( {\frac{{3{{(2)}^4}}}{2} - \frac{{3{{(2)}^5}}}{5}} \right)\\ = \frac{1}{4}\left( {24 - \frac{{96}}{5}} \right)\end{aligned}\)
On further simplification,
\(\begin{aligned}{c}\bar x = \frac{1}{4}\left( {\frac{{120 - 96}}{5}} \right)\\ = \frac{1}{4}\left( {\frac{{24}}{5}} \right)\\ = \frac{6}{5}\end{aligned}\)
The \(y\)-coordinate of the center of the mass is given by,
Integrate with respect to \(x\)and apply the corresponding limit,
\(\begin{aligned}{c}\bar y = \frac{1}{8}\int_0^2 {{x^2}} \left( {\left( {36 + 4{x^2} - 24x} \right) - {x^2}} \right)dx\\ = \frac{1}{8}\int_0^2 {\left( {36{x^2} + 3{x^4} - 24{x^3}} \right)} dx\\ = \frac{1}{8}\left( {\frac{{36{x^3}}}{3} + \frac{{3{x^5}}}{5} - \frac{{24{x^4}}}{4}} \right)_0^2\\ = \frac{1}{8}\left( {12{{(2)}^3} + \frac{{3{{(2)}^5}}}{5} - 6{{(2)}^4}} \right)\end{aligned}\)
On further simplification,
\(\begin{aligned}{c}\bar y = \frac{1}{4}\left( {12{{(2)}^2} + \frac{{3{{(2)}^4}}}{5} - 6{{(2)}^3}} \right)\\ = \frac{1}{4}\left( {48 + \frac{{48}}{5} - 48} \right)\\ = \frac{1}{4}\left( {\frac{{48}}{5}} \right)\\ = \frac{{12}}{5}\end{aligned}\)
The center of the mass of lamina is \((\bar x,\bar y) = \left( {\frac{6}{5},\frac{{12}}{5}} \right).\)
Thus, the total mass of lamina is \(4\)units and the center of mass of lamina is \(\left( {\frac{6}{5},\frac{{12}}{5}} \right).\)