Chapter 12: Q6E (page 707)
Evaluate the iterated integrand \(\int_0^1 {\int_0^v {\sqrt {1 + {e^v}} } } dwdv. \)
Short Answer
Value of integral is \(\frac{2}{3}\left( {{{(1 + e)}^{\frac{3}{2}}} - {2^{\frac{3}{2}}}} \right)\).
Chapter 12: Q6E (page 707)
Evaluate the iterated integrand \(\int_0^1 {\int_0^v {\sqrt {1 + {e^v}} } } dwdv. \)
Value of integral is \(\frac{2}{3}\left( {{{(1 + e)}^{\frac{3}{2}}} - {2^{\frac{3}{2}}}} \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \({\rm{E}}\) be the solid in the first octant bounded by the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\) and the planes \({\rm{y = z, x = 0}}\)and \({\rm{z = 0}}\)with the density function \({\rm{\rho (x,y,z) = 1 + x + y + z}}\). Use a computer algebra system to find the exact values of the following quantities for \({\rm{E}}\).
Calculate the iterated integral.
\(\int {_1^3\int {_1^5} \frac{{Iny}}{{xy}}dydx} \)
\(\int\limits_0^{\sqrt \pi } {\int\limits_y^{\sqrt \pi } {cos({x^2})} dxdy} \)
find the volume of the solid that lies under the hyperbolic paraboloid \(z = 3{y^2} - {x^2} + 2\) and above the rectangle \(R = \left( { - 1,1} \right)X\left( {1,2} \right)\)
Find the volume of the of the solid enclosed by the paraboloid\(z = 2 + {x^2} + {\left( {y - 2} \right)^2}\)and the plane\(z = 1,x = 1,x = - 1,y = 0{\rm{ and }}y = 4\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.