Chapter 12: Q5RE (page 752)
Calculate the iterated integral.
\(\int_0^{\pi /2} {\int_0^y {\int_0^x {cos} } } (x + y + z)dzdxdy\)
Short Answer
The value of the integral is \(\frac{{ - 1}}{3}\)
Chapter 12: Q5RE (page 752)
Calculate the iterated integral.
\(\int_0^{\pi /2} {\int_0^y {\int_0^x {cos} } } (x + y + z)dzdxdy\)
The value of the integral is \(\frac{{ - 1}}{3}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIdentify the surface whose equation is given.
\({\rm{2}}{{\rm{r}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^2}{\rm{ = 1}}\)
Use your CAS to compute iterated integrals. \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dydx} } \) and . \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dxdy} } \). Explain with the help of Fubiniโs theorem.
Use a graphing device to draw the solid enclosed by the paraboloids \({\rm{z = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\) and \({\rm{z = 5 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}.\)
Sketch the region of integration and change the order of integration\(\int\limits_0^1 {\int\limits_0^y {f(x,y)dx} dy} \)
\(\int\limits_1^2 {\int\limits_{arctanx}^{\frac{\pi }{4}} {f(x,y)dy} dx} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.