Chapter 12: Q5E (page 728)
To evaluate the given integral .
\(\int_0^{\frac{\pi }{2}} {\int_0^y {\int_0^x {\cos } } } (x + y + z)dzdxdy\).
Short Answer
The value of the given iterated integral is \(\frac{{ - 1}}{3}\).
Chapter 12: Q5E (page 728)
To evaluate the given integral .
\(\int_0^{\frac{\pi }{2}} {\int_0^y {\int_0^x {\cos } } } (x + y + z)dzdxdy\).
The value of the given iterated integral is \(\frac{{ - 1}}{3}\).
All the tools & learning materials you need for study success - in one app.
Get started for freefind the volume of the solid that lies under the hyperbolic paraboloid \(z = 3{y^2} - {x^2} + 2\) and above the rectangle \(R = \left( { - 1,1} \right)X\left( {1,2} \right)\)
Use a graphing device to draw the solid enclosed by the paraboloids \({\rm{z = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\) and \({\rm{z = 5 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}.\)
Sketch the solid whose volume is given by the integrated integral.
\(\int\limits_0^1 {\int\limits_0^1 {\left( {2 - {x^2} - {y^2}} \right)dydx} } \)
Under the cone \({\rm{z = }}\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} {\rm{ }}\)and above the disk\({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ }} \le {\rm{ 4}}\)
Where \({\rm{R}}\)is the region in the first quadrant enclosed by the circle\({{\rm{x}}^2}{\rm{ + }}{{\rm{y}}^2}{\rm{ = }}4\)and the lines\({\rm{x = 0 and y = x}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.