Chapter 12: Q5E (page 749)
Find the Jacobian of the transformation\(\begin{array}{l}x = u/v\;\\y = v/w\;\\z = w/u\end{array}\)
Short Answer
The Jacobian of the transformation is \(0\)
Chapter 12: Q5E (page 749)
Find the Jacobian of the transformation\(\begin{array}{l}x = u/v\;\\y = v/w\;\\z = w/u\end{array}\)
The Jacobian of the transformation is \(0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that:, \(cos xy dA \le \frac{1}{{32}}\) where \(R = \left( {0,\frac{1}{4}} \right) \times \left( {\frac{1}{4},\frac{1}{2}} \right)\)
16: Evaluate the double integral \(\iint\limits_D {\left( {{x^2} + 2y} \right)dA}\)D is bounded by\(y = x,y = {x^3},x \ge 0\)
Find the average value of the function\({\rm{f(x,y,z) = }}{{\rm{x}}^{\rm{2}}}{\rm{z + }}{{\rm{y}}^{\rm{2}}}{\rm{z}}\)over the region enclosed by the parabolic\({\rm{z = 1 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\)and the plane z=0.
Let\({\rm{E}}\)be the solid in the first octant bounded by the cylinder\({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\)and the planes\({\rm{y = z, x = 0}}\)and\({\rm{z = 0}}\)with the density function\({\rm{\rho (x,y,z) = 1 + x + y + z}}\). Use a computer algebra system to find the exact values of the following quantities for\({\rm{E}}\).
Sketch the region of integration and change the order of integration\(\int\limits_0^1 {\int\limits_0^y {f(x,y)dx} dy} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.