Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Describe in words the surface whose equation is given \(\phi {\rm{ = \pi /3}}\).

Short Answer

Expert verified

The equation is \({\rm{3}}{{\rm{z}}^{\rm{2}}}{\rm{ = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\), the equation shape is \(\phi {\rm{ = \pi /3 > 0}}\) the upper half of the double cone (Half cone).

Step by step solution

01

Given data.

Equation \(\phi {\rm{ = \pi /3}}\)

02

Equation shape.

Spherical coordinates,

\(\begin{array}{l}{\rm{(1)x = \rho sin}}\phi {\rm{cos\theta }}\\{\rm{(2)y = \rho sin}}\phi {\rm{sin\theta }}\\{\rm{(3)z = \rho cos}}\phi \\{\rm{(4)}}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = }}{{\rm{\rho }}^{\rm{2}}}\end{array}\)

Here,

\(\begin{aligned}{\rm{cos}}\phi \rm &= cos(\pi /3)\\\rm &= \frac{{\rm{1}}}{{\rm{2}}}\end{aligned}\)

Therefore,

\(\begin{aligned}{\rm{co}}{{\rm{s}}^{\rm{2}}}\phi \rm &= \frac{{\rm{1}}}{{\rm{4}}}{{\rm{\rho }}^{\rm{2}}}{\rm{co}}{{\rm{s}}^{\rm{2}}}\phi \\ \rm &= \frac{{\rm{1}}}{{\rm{4}}}{{\rm{\rho }}^{\rm{2}}}\end{aligned}\)

So,

\(\begin{aligned}{{\rm{z}}^{\rm{2}}} \rm &= \frac{{\rm{1}}}{{\rm{4}}}\left( {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}} \right)\\{\rm{4}}{{\rm{z}}^{\rm{2}}} \rm &= {{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}\\{\rm{3}}{{\rm{z}}^{\rm{2}}} \rm &= {{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\end{aligned}\)

Here,\({\rm{3}}{{\rm{z}}^{\rm{2}}}{\rm{ = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\) this is an equation of double cone. The given equation is \(\phi {\rm{ = \pi /3 > 0}}\).

As the result of the given equation shape is \(\phi {\rm{ = \pi /3 > 0}}\) the upper half of the double cone (Half cone).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free