Chapter 12: Q50E (page 708)
\(\int {\int\limits_D y dA} \).
Short Answer
The process of finding a function \(g\left( x \right)\)the deviate of which, \(Dg\left( x \right)\)is equal to a given function\(f\left( x \right)\).
Chapter 12: Q50E (page 708)
\(\int {\int\limits_D y dA} \).
The process of finding a function \(g\left( x \right)\)the deviate of which, \(Dg\left( x \right)\)is equal to a given function\(f\left( x \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the integrated integral \(\int\limits_{ - 3}^3 {\int\limits_0^{\pi /2} {(y + {y^2}\cos x)dxdy} } \)
Evaluate the double integral \(\iint\limits_D {\left( {{y^2}} \right)dA}\) D is the triangular region with vertices\((0,1),(1,2),(4,1)\)
Evaluate the iterated integral \(\int_0^1 {\int_{{x^2}}^x {(1 + 2y)} } dydx. \)
Calculate the iterated integral\(\int\limits_0^1 {\int\limits_0^1 {\sqrt {s + t} {\rm{ }}} } dsdt\)
Where \({\rm{R}}\)is the region in the first quadrant enclosed by the circle\({{\rm{x}}^2}{\rm{ + }}{{\rm{y}}^2}{\rm{ = }}4\)and the lines\({\rm{x = 0 and y = x}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.