The intersection of the parabolic and the\(xy\)plane is obtained by setting z=0. This is clearly a circle, as\({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\). We may easily express y to set the bounds of the second integral using the circle equation. The volume is calculated by taking the integral of 1 over the given region:
\({\rm{V = }}\int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{\rm{ - }}\sqrt {{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} }^{\sqrt {{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} } {\int_{\rm{0}}^{{\rm{1 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}} {\rm{d}} } } {\rm{zdydx = }}\int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{\rm{ - }}\sqrt {{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} }^{\sqrt {{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} } {\rm{1}} } {\rm{ - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}{\rm{dydx}}\)
To solve the double integral, switch to polar coordinates:
\(\int_{\rm{0}}^{{\rm{2\pi }}} {\int_{\rm{0}}^{\rm{1}} {\rm{r}} } {\rm{ - }}{{\rm{r}}^{\rm{3}}}{\rm{ = }}\frac{{\rm{\pi }}}{{\rm{2}}}\)