Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the average value of the function \({\rm{f(x, y, z) = x y z}}\) over the cube with side length that lies in the first octant with one vertex at the origin and edges parallel to the coordinate axes.

Short Answer

Expert verified

The average value of the function \({\rm{f(x, y, z) = x y z}}\) is \({{\rm{f}}_{{\rm{avg}}}}{\rm{ = }}\frac{{{{\rm{L}}^{\rm{3}}}}}{{\rm{8}}}\).

Step by step solution

01

Concept Introduction

Triple integrals are the three-dimensional equivalents of double integrals. They're a way to add up an unlimited number of minuscule quantities connected with points in a three-dimensional space.

02

Find average value of the function

Over an area E, the average value of the function f(x, y, z) is given by

\({{\text{f}}_{\text{avg }}}\text{=}\frac{\text{1}}{\text{V}}\iiint_{\text{E}}{\text{f}}\text{(x,y,z)dV}\)

Where V is the volume of the region E, calculated as follows:

\(\text{V=}\iiint_{\text{E}}{\text{d}}\text{V}\)

03

Find the average value of the function

The region inside the given cube can be defined as

\({\rm{E = \{ (x,y,z)}}\mid {\rm{0}} \le {\rm{x,y,z}} \le {\rm{L\} }}\)

It's also worth noting that the cube's volume is\({\rm{V = }}{{\rm{L}}^{\rm{3}}}\).

Therefore,

\(\begin{aligned}{{\rm{f}}_{{\rm{avg}}}}\rm&= \frac{{\rm{1}}}{{{{\rm{L}}^{\rm{3}}}}}\int_{\rm{0}}^{\rm{L}} {\int_{\rm{0}}^{\rm{L}} {\int_{\rm{0}}^{\rm{L}} {\rm{x}} } } {\rm{yzdxdydz }}\\\rm &= \frac{{\rm{1}}}{{{{\rm{L}}^{\rm{3}}}}}\left( {\int_{\rm{0}}^{\rm{L}} {\rm{x}} {\rm{dx}}} \right)\left( {\int_{\rm{0}}^{\rm{L}} {\rm{y}} {\rm{dy}}} \right)\left( {\int_{\rm{0}}^{\rm{L}} {\rm{z}} {\rm{dz}}} \right)\end{aligned}\)

Keep in mind:

\(\int_{\rm{a}}^{\rm{b}} {\rm{f}} {\rm{(x)dx = }}\int_{\rm{a}}^{\rm{b}} {\rm{f}} {\rm{(z)dz}}\)

Hence,

\(\begin{aligned}{{\rm{f}}_{{\rm{avg }}}}\rm &=\frac{{\rm{1}}}{{{{\rm{L}}^{\rm{3}}}}}{\left( {\int_{\rm{0}}^{\rm{L}} {\rm{x}} {\rm{dx}}} \right)^{\rm{3}}}\\{{\rm{f}}_{{\rm{avg}}}}\rm &= \frac{{\rm{1}}}{{{{\rm{L}}^{\rm{3}}}}}{\left( {\left( {\frac{{{{\rm{x}}^{\rm{2}}}}}{{\rm{2}}}} \right)_{\rm{0}}^{\rm{L}}} \right)^{\rm{3}}}\\{{\rm{f}}_{{\rm{avg}}}}\rm &= \frac{{\rm{1}}}{{{{\rm{L}}^{\rm{3}}}}}{\left( {\frac{{{{\rm{L}}^{\rm{2}}}}}{{\rm{2}}}} \right)^{\rm{3}}}\\{{\rm{f}}_{{\rm{avg}}}}\rm &=\frac{{\rm{1}}}{{{{\rm{L}}^{\rm{3}}}}}{\rm{ *}}\frac{{{{\rm{L}}^{\rm{6}}}}}{{\rm{8}}}{\rm{ = }}\frac{{{{\rm{L}}^{\rm{3}}}}}{{\rm{8}}}\end{aligned}\)

Therefore, the average value of the function \({\rm{f(x, y, z) = x y z}}\) is \({{\rm{f}}_{{\rm{avg}}}}{\rm{ = }}\frac{{{{\rm{L}}^{\rm{3}}}}}{{\rm{8}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free