Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(\int\limits_0^1 {\int\limits_{\arcsin y}^{{\raise0.7ex\hbox{\(\pi \)} \!\mathord{\left/ {\vphantom{\pi 2}}\right.}\!\lower0.7ex\hbox{\(2\)}}} {\cos x\sqrt {1 + {{\cos }^2}x} dxdy} } \).

Short Answer

Expert verified

The process of switching between \(dxdy\) order and \(dydx\) order in double integral is called changing the order of integration.

Step by step solution

01

Given Data.

Consider the integral:

\(\int\limits_0^1 {\int\limits_{\arcsin y}^{{\raise0.7ex\hbox{$\pi $} \!\mathord{\left/

{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{$2$}}} {\cos x\sqrt {1 + {{\cos }^2}x} dx} } dy\)

The inner limits of integration indicate that \(\arcsin y \le x \le \frac{\pi }{2}\) and the outer limits of integration indicate that \(0 \le y \le 1\).

02

Graphical Representation.

Now integrate first on \(y\), start by finding the limits of a vertical line passing through the region of integration \(0 \le y \le \sin x\).

The range of \(x\) values is \(0 \le x \le \frac{\pi }{2}\).

Call the integral I and set it up in reverse order.

03

Reversing Order of Integration.

\(\begin{array}{c}\int\limits_0^1 {\int\limits_{\arcsin y}^{{\raise0.7ex\hbox{$\pi $} \!\mathord{\left/

{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{$2$}}} {\cos x\sqrt {1 + {{\cos }^2}x} dx} } dy = \int\limits_0^{{\raise0.7ex\hbox{$\pi $} \!\mathord{\left/

{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{$2$}}} {\int\limits_0^{\sin x} {\cos x\sqrt {1 + {{\cos }^2}x} } } dydx\\ = \int\limits_0^{{\raise0.7ex\hbox{$\pi $} \!\mathord{\left/

{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{$2$}}} {\cos x\sin x} dx\end{array}\)

Put \(u = \cos x \Rightarrow du = - \sin xdx\).

When \(x \to 0 \Rightarrow u \to 1\)

When \(x \to \frac{\pi }{2} \Rightarrow u \to 0\)

\(\begin{array}{c}\int\limits_0^1 {\int\limits_{\arcsin y}^{{\raise0.7ex\hbox{$\pi $} \!\mathord{\left/

{\vphantom {\pi 2}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{$2$}}} {\cos x\sqrt {1 + {{\cos }^2}x} dx} } dy = \int\limits_0^1 u du\\ = \left( {\frac{{{u^2}}}{2}} \right)_0^1\\ = \frac{1}{2}\end{array}\)

Therefore, the value of integral is \(\frac{1}{2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free