Chapter 12: Q47E (page 730)
Find the moment of inertia about the z -axis of the solid.
Short Answer
The moment of inertia about the z –axis is: \(\frac{{{\rm{\pi kh}}{{\rm{a}}^{\rm{4}}}}}{{\rm{2}}}\).
Chapter 12: Q47E (page 730)
Find the moment of inertia about the z -axis of the solid.
The moment of inertia about the z –axis is: \(\frac{{{\rm{\pi kh}}{{\rm{a}}^{\rm{4}}}}}{{\rm{2}}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the double integral
\(\int {\int\limits_R {y{e^{ - xy}}dA,R = \left( {0,2} \right)X\left( {0,3} \right)} } \)
Describe in words the surface whose equation is given.
\({\rm{\theta = \pi /4}}\).
To sketch the solid whose volume is given by the iterated integral and evaluate it.
\(\int\limits_0^{\sqrt \pi } {\int\limits_y^{\sqrt \pi } {cos({x^2})} dxdy} \)
Evaluate \(\iiint_{\text{E}}{{{\text{x}}^{\text{2}}}}\text{dV}\), where \({\rm{E}}\) is the solid that lies within the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\), above the plane \({\rm{z = 0}}\), and below the cone \({{\rm{z}}^{\rm{2}}}{\rm{ = 4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{2}}}\).Use cylindrical coordinates.
What do you think about this solution?
We value your feedback to improve our textbook solutions.