Chapter 12: Q46E (page 708)
\(\int\limits_0^1 {\int\limits_x^1 {{e^{{x \mathord{\left/{\vphantom {x y}} \right.} y}}}dydx} }\)
Short Answer
Thus, the value of integral is\(\frac{{e - 1}}{2}\).
Chapter 12: Q46E (page 708)
\(\int\limits_0^1 {\int\limits_x^1 {{e^{{x \mathord{\left/{\vphantom {x y}} \right.} y}}}dydx} }\)
Thus, the value of integral is\(\frac{{e - 1}}{2}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the mass and center of mass of the solid with the given density function \({\rm{q}}\).
\({\rm{E}}\) is the tetrahedron bounded by the planes \({\rm{x = 0,y = 0,}}\)\({\rm{z = 0, x + y = 1; q(x,y,z) = y}}\)
Evaluate \(\iint\limits_D {\frac{y}{{1 + {x^5}}}dA,D = \{ (x,y)/0 \leqslant x \leqslant 1,0 \leqslant y \leqslant {x^2}\} }\)
Use a graphing device to draw the solid enclosed by the paraboloids \({\rm{z = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\) and \({\rm{z = 5 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}.\)
Evaluate the double integral \(\iint\limits_D {\left( {x{y^2}} \right)dA}\)D is enclosed by\(x = 0, x = \sqrt {1 - {y^2}} \)
Let \({\rm{E}}\) be the solid in the first octant bounded by the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\) and the planes \({\rm{y = z, x = 0}}\)and \({\rm{z = 0}}\)with the density function \({\rm{\rho (x,y,z) = 1 + x + y + z}}\). Use a computer algebra system to find the exact values of the following quantities for \({\rm{E}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.