Chapter 12: Q46E (page 730)
Find the moments of inertia for a rectangular brick with dimensions a ,b, and c , mass M, and constant density if the centre of the brick is situated at the origin and the edges are parallel to the coordinate axes.
Short Answer
The moments of inertia for a rectangular brick and edges are parallel to the coordinate axes are:
\(\begin{aligned}{{\rm{I}}_{\rm{x}}}\rm &= \frac{{{\rm{M}}\left( {{{\rm{b}}^{\rm{2}}}{\rm{ + }}{{\rm{c}}^{\rm{2}}}} \right)}}{{{\rm{12}}}}{\rm{,}}\;\;\\\;{{\rm{I}}_{\rm{y}}}\rm &= \frac{{{\rm{M}}\left( {{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{c}}^{\rm{2}}}} \right)}}{{{\rm{12}}}}{\rm{,}}\;\;\\\;{{\rm{I}}_{\rm{z}}}\rm &= \frac{{{\rm{M}}\left( {{{\rm{a}}^{\rm{2}}}{\rm{ + }}{{\rm{b}}^{\rm{2}}}} \right)}}{{{\rm{12}}}}\end{aligned}\).