Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use your CAS to compute iterated integrals. \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dydx} } \) and . \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dxdy} } \). Explain with the help of Fubini’s theorem.

Short Answer

Expert verified

Fubini’s theorem dies not apply here.

Step by step solution

01

Using maple to find exact value of integrals.

\(\begin{array}{l}evalf\left( {{\mathop{\rm int}} \left( {{\mathop{\rm int}} \left( {\frac{{x - y}}{{{{(x + y)}^3}}}} \right)x = 0....1,y = 0....1} \right)} \right);\\ > evalf\left( {{\mathop{\rm int}} \frac{{(x - y)}}{{{{(x + y)}^3}}},y = 0....1,x = 0....1} \right);\end{array}\)

Maple result:

\(evalf\left( {{\mathop{\rm int}} \left( {{\mathop{\rm int}} \left( {\frac{{x - y}}{{{{(x + y)}^3}}},x = 0....1} \right),y = 0....1} \right)} \right);\)

\( - 0.50000000\)

\(evalf\left( {{\mathop{\rm int}} \left( {{\mathop{\rm int}} \left( {\frac{{x - y}}{{{{(x + y)}^3}}},y = 0....1} \right),x = 0....1} \right)} \right);\)

\(0.50000000\)

So,\(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dydx} } = 0.5\)

\(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dxdy} } = - 0.5\)

Therefore, \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dydx} } \ne \int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dxdy} } \)

02

Sketching the graph of the function  

\(f(x,y) = \frac{{x - y}}{{{{(x + y)}^3}}}\)on \(R = (0,1) \times (0,1)\).

According to Fubini’s theorem, if the integral is continuous on\(R = (0,1) \times (0,1)\), then only we can write\(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dydx} } = \int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dxdy} } \).

But, from graph, the function is not continuous.

So, Fubini’s theorem does not apply here

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free