Chapter 12: Q45E (page 708)
\(\int\limits_0^4 {\int\limits_{\sqrt x }^2 {\frac{1}{{{y^3} + 1}}dydx} } \).
Short Answer
Thus, the value of integral is\(\frac{1}{3}\ln 3\).
Chapter 12: Q45E (page 708)
\(\int\limits_0^4 {\int\limits_{\sqrt x }^2 {\frac{1}{{{y^3} + 1}}dydx} } \).
Thus, the value of integral is\(\frac{1}{3}\ln 3\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the double integral:\begin{gathered}\iint\limits_D {{x^3}dA,} \hfill \\D = \{ x,y)/1 \leqslant x \leqslant e,0 \leqslant y \leqslant lnx\} \hfill \\\end{gathered}
Use a graphing device to draw the solid enclosed by the paraboloids \({\rm{z = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\) and \({\rm{z = 5 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}.\)
Calculate the iterated integral \(\int\limits_0^1 {\int\limits_0^3 {{e^{x + 3y}}} } dxdy\)
Describe in words the surface whose equation is given
\({\rm{r = 5}}\).
Use symmetry to evaluate the double integral
\(R = ( - \pi ,\pi ) \times ( - \pi ,\pi )\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.