Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use symmetry to evaluate the double integral

\(R = ( - \pi ,\pi ) \times ( - \pi ,\pi )\)

Short Answer

Expert verified

Thus, the value of the integral is\(4{\pi ^2}\).

Step by step solution

01

Separating the integral

\(\int\limits_{ - \pi }^\pi {\int\limits_{ - \pi }^\pi {1dxdy + } } \int\limits_{ - \pi }^\pi {\int\limits_{ - \pi }^\pi {{x^2}\sin ydxdy + } } \int\limits_{ - \pi }^\pi {\int\limits_{ - \pi }^\pi {{y^2}\sin xdxdy} } \)

02

Changing the order of integration

\(\begin{array}{c}\int\limits_{ - \pi }^\pi {\int\limits_{ - \pi }^\pi {\left( {1 + {x^2}\sin y + {y^2}\sin xdxdy} \right)} } \\ = \int\limits_{ - \pi }^\pi {\int\limits_{ - \pi }^\pi {1dxdy + } } \int\limits_{ - \pi }^\pi {{x^2}\int\limits_{ - \pi }^\pi {\sin ydydx + } } \int\limits_{ - \pi }^\pi {{y^2}\int\limits_{ - \pi }^\pi {\sin xdxdy} } \end{array}\)

Observing that first integral is a constant& the second two are both oddfunctions over symmetric intervals.

So,

\(\begin{array}{c}\int\limits_{ - \pi }^\pi {\int\limits_{ - \pi }^\pi {\left( {1 + {x^2}\sin y + {y^2}\sin xdxdy} \right)} } \\ = 4{\pi ^2} + \int\limits_{ - \pi }^\pi {0dx} + \int\limits_{ - \pi }^\pi {0dy} \\ = 4{\pi ^2}\end{array}\)

Hence, the answer is \(4{\pi ^2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free