Our region of integration is all of three-dimensional space, so if we integrate over this region in spherical coordinates, we will let \(0 \le \theta \le 2\pi ,\)
\(0 \le \phi \le \pi ,\)and \(0 \le \rho \le \infty .\)
We know that\(\frac{{\partial (x,y,z)}}{{\partial (\rho ,\phi ,\theta )}} = {\rho ^2}\sin (\phi )\)
Also, the integrand above becomes \(\rho {e^{ - {\rho ^2}}}\)in spherical.
Therefore, the integral is
\(\begin{array}{l}\int_0^{2\pi } {\int_0^\pi {\int_0^\infty {{\rho ^3}} } } \sin (\phi ){e^{ - {\rho ^2}}}\;{\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta \\ = \left. {\int_0^{2\pi } {\int_0^\pi {\sin } } (\phi )\frac{{ - \left( {{\rho ^2} + 1} \right){e^{ - {\rho ^2}}}}}{2}} \right|_0^\infty {\rm{d}}\phi {\rm{d}}\theta \end{array}\)
\(\begin{array}{l} = \int_0^{2\pi } {\int_0^\pi {\frac{{\sin (\phi )}}{2}} } \;{\rm{d}}\phi {\rm{d}}\theta \\ = \int_0^{2\pi } 1 \;{\rm{d}}\theta \\ = 2\pi \end{array}\)
Thus, the integral is \(2\pi \)