Chapter 12: Q42E (page 708)
\(\int\limits_1^2 {\int\limits_{arctanx}^{\frac{\pi }{4}} {f(x,y)dy} dx} \)
Short Answer
We should know how to do graphical representation.
Chapter 12: Q42E (page 708)
\(\int\limits_1^2 {\int\limits_{arctanx}^{\frac{\pi }{4}} {f(x,y)dy} dx} \)
We should know how to do graphical representation.
All the tools & learning materials you need for study success - in one app.
Get started for freeSet up, but do not evaluate, integral expressions for
The hemisphere.
Where \({\rm{R}}\)is the region in the first quadrant enclosed by the circle\({{\rm{x}}^2}{\rm{ + }}{{\rm{y}}^2}{\rm{ = }}4\)and the lines\({\rm{x = 0 and y = x}}\).
\(\int\limits_{ - 2}^2 {\int\limits_0^{\sqrt {4 - {y^2}} } {f(x,y)dy} dx} \)
Calculate the iterated integral.
\(\int {_1^4\int {_0^2\left( {6{x^2}y - 2x} \right)dydx} } \)
Evaluate the iterated integral \(\int_0^1 {\int_0^{{s^2}} {cos} } \left( {{s^3}} \right)dtds\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.