Chapter 12: Q41E (page 700)
If \(f\)is a continuous function, \(f(x,y) = k\), and \(R = (a,b) \times (c,d)\), then show that
Short Answer
proved below
Chapter 12: Q41E (page 700)
If \(f\)is a continuous function, \(f(x,y) = k\), and \(R = (a,b) \times (c,d)\), then show that
proved below
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite the equations in cylindrical coordinates.
a. \({\rm{3x + 2y + z = 6}}\)
b. \({\rm{ - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{^{\rm{2}}}}{\rm{ = 1}}\)
Find the average value of the function\({\rm{f(x,y,z) = }}{{\rm{x}}^{\rm{2}}}{\rm{z + }}{{\rm{y}}^{\rm{2}}}{\rm{z}}\)over the region enclosed by the parabolic\({\rm{z = 1 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\)and the plane z=0.
In evaluating a double integral over a region\(D\), sum of iterated integrals was obtained as follows:
\(\int {\int\limits_D {f\left( {x,y} \right)} } dA = \int\limits_0^1 {\int\limits_0^{2y} {f\left( {x,y} \right)} } dxdy + \int\limits_1^3 {\int\limits_0^{2 - y} {f\left( {x,y} \right)dxdy} } \).
Sketch the region\(D\)and express the double integral as an iterated integral with reversed order of integration.
Change from rectangular to cylindrical coordinates .
(a). \({\rm{(2}}\sqrt {\rm{3}} {\rm{,2, - 1)}}\)
(b). \({\rm{(4, - 3,2)}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.