Note that for any Constant \(c\), if
\(\int {f\left( x \right)dx = F\left( x \right)} \)then,
\(\int {f\left( {x + c} \right)dx = F\left( {x + c} \right)} \)
\begin{aligned}{f_{ave}} &= \frac{1}{6}\left( {\frac{2}{5}{{\left( {x + e} \right)}^{{5 \mathord{\left/{\vphantom {5 2}} \right.} 2}}} - \frac{2}{5}{{\left( {x + 1} \right)}^{{5 \mathord{\left/{\vphantom {5 2}} \right.} 2}}}} \right)_0^4 \\ &= \frac{1}{{15}}\left[ {{{\left( {4 + e} \right)}^{{5 \mathord{\left/{\vphantom {5 2}} \right.} 2}}} - {{\left( e \right)}^{{5 \mathord{\left/{\vphantom {5 2}} \right.} 2}}} - {{\left( 5 \right)}^{{5 \mathord{\left/{\vphantom {5 2}} \right.} 2}}} + {{\left( 1 \right)}^{{5 \mathord{\left/{\vphantom {5 2}}\right.} 2}}}} \right] \\ &= \frac{1}{{15}}\left[ {{{\left( {4 + e} \right)}^{{5 \mathord{\left/{\vphantom {5 2}} \right.} 2}}} - {{\left( e \right)}^{{5 \mathord{\left/{\vphantom {5 2}} \right.} 2}}} - {{\left( 5 \right)}^{{5 \mathord{\left/{\vphantom {5 2}} \right.} 2}}} + 1} \right] \\ \end{aligned}
Therefore, average value of f is \(=\frac{1}{15}\left( {{\left( 4+e \right)}^{{5}/{2}\;}}-{{e}^{{5}/{2}\;}}-{{5}^{{5}/{2}\;}}+1 \right)\)