Chapter 12: Q40E (page 707)
\(\int\limits_{ - 2}^2 {\int\limits_0^{\sqrt {4 - {y^2}} } {f(x,y)dy} dx} \)
Short Answer
We should know how to do graphical representation.
Chapter 12: Q40E (page 707)
\(\int\limits_{ - 2}^2 {\int\limits_0^{\sqrt {4 - {y^2}} } {f(x,y)dy} dx} \)
We should know how to do graphical representation.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse symmetry to evaluate the double integral
\(R = ( - \pi ,\pi ) \times ( - \pi ,\pi )\)
Use a graphing device to draw the solid enclosed by the paraboloids \({\rm{z = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\) and \({\rm{z = 5 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}.\)
Use your CAS to compute iterated integrals. \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dydx} } \) and . \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dxdy} } \). Explain with the help of Fubini’s theorem.
\(\int\limits_1^2 {\int\limits_{arctanx}^{\frac{\pi }{4}} {f(x,y)dy} dx} \)
Evaluate\(\iiint_{\text{E}}{\sqrt{{{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}}}\text{dV}\), where \(E\) is enclosed by the planes \({\rm{z = 0}}\) and \({\rm{z = x + y + 5}}\) and by the cylinders \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 4}}\) and \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 9}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.