Chapter 12: Q3E (page 720)
To evaluate the given integral.
\(\int_0^2 {\int_0^{{z^2}} {\int_0^{y - z} {(2x - y)} } } dxdydz\)
Short Answer
The value of the given iterated integral is \(\frac{{16}}{{15}}\).
Chapter 12: Q3E (page 720)
To evaluate the given integral.
\(\int_0^2 {\int_0^{{z^2}} {\int_0^{y - z} {(2x - y)} } } dxdydz\)
The value of the given iterated integral is \(\frac{{16}}{{15}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freea) In what way Fubini and Clairaultโs theorem are similar?
b) If \(f(x,y)\) is continuous on \(R = (a,b) \times (c,d)\) and \(g(x,y) = \int\limits_0^1 {\int\limits_0^1 {f(s,t)dtds} } \) for \(a < x < b\), \(c < y < d\), Show that \({g_{xy}} = {g_{yx}} = f(x,y)\).
Find the volume of the solid enclosed by the surface \(z = x{\sec ^2}y\)and the plane \(x = 0,x = 2,y = 0\& y = \frac{\pi }{4}\)
Calculate the iterated integral.
\(\int {_1^3\int {_1^5} \frac{{Iny}}{{xy}}dydx} \)
Write the equations in cylindrical coordinates.
a. \({{\rm{x}}^{\rm{2}}}{\rm{ - x + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 1}}\)
b.\({\rm{z}} = {{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\)
Calculate the iterated integral\(\int\limits_1^4 {\int\limits_1^2 {\left( {\frac{x}{y} + \frac{y}{x}} \right)} } dydx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.