Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question:Write five other iterated integrals that are equal to the given iterated integral.

\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{y}}^{\rm{1}} {\int_{\rm{0}}^{\rm{z}} {\rm{f}} } } {\rm{(x,y,z)dx\;dz\;dy}}\)

Short Answer

Expert verified

Hint: Make use of projections \({\rm{E}}\)onto planes \({\rm{xy,yz}}\)and \({\rm{xz}}\).

Step by step solution

01

Concept Introduction

A multiple integral is a definite integral of a function of many real variables in mathematics (particularly multivariable calculus), such as f(x, y) or f(x, y) (x, y, z). Integrals of a two-variable function over a region

02

Explanation of the solution

1) We begin by defining \({\rm{E}}\) the expression we have been given, resulting in:\(E = \{ (x,y,z)\mid 0 \le x \le z,y \le z \le 1,0 \le y \le 1\} \)

2) It's now critical to remember that \({\rm{E}}\) is restricted from below by two different surfaces, so keep that in mind while you design your projection onto the \({\rm{xy}}\)plane

3) Drawing of a projection \({\rm{E}}\)onto \({\rm{xy}}\)plane:

4) Drawing of a projection \({\rm{E}}\)onto \({\rm{xy}}\)plane:

5) Notice that the projection onto the \({\rm{yz}}\) plane is the same as the projection onto the \({\rm{xz}}\)plane:

6) The equivalent integrals can now be written.

\(\begin{array}{c}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{y}}^{\rm{1}} {\int_{\rm{0}}^{\rm{z}} {\rm{f}} } } {\rm{(x,y,z)dx\;dz\;dy = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{\rm{x}} {\int_{\rm{x}}^{\rm{1}} {\rm{f}} } } {\rm{(x,y,z)dz\;dy\;dx + }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{x}}^{\rm{1}} {\int_{\rm{y}}^{\rm{1}} {\rm{f}} } } {\rm{(x,y,z)dz\;dy\;dx}}\\{\rm{ = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{y}}^{\rm{1}} {\int_{\rm{x}}^{\rm{1}} {\rm{f}} } } {\rm{(x,y,z)dz\;dx\;dy + }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{\rm{y}} {\int_{\rm{y}}^{\rm{1}} {\rm{f}} } } {\rm{(x,y,z)dz\;dx\;dy}}\\{\rm{ = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{x}}^{\rm{1}} {\int_{\rm{0}}^{\rm{z}} {\rm{f}} } } {\rm{(x,y,z)dy\;dz\;dx}}\\{\rm{ = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{\rm{z}} {\int_{\rm{0}}^{\rm{z}} {\rm{f}} } } {\rm{(x,y,z)dy\;dx\;dz}}\\{\rm{ = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{\rm{z}} {\int_{\rm{0}}^{\rm{z}} {\rm{f}} } } {\rm{(x,y,z)dx\;dy\;dz}}\end{array}\)

Make use of projections \({\rm{E}}\)onto planes \({\rm{xy,yz}}\)and \({\rm{xz}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free