Chapter 12: Q33E (page 689)
Find the volume of the solid enclosed by the surface \(z = x{\sec ^2}y\)and the plane \(x = 0,x = 2,y = 0\& y = \frac{\pi }{4}\)
Short Answer
Given:- \(z = x{\sec ^2}y\)
To find:- Volume
Chapter 12: Q33E (page 689)
Find the volume of the solid enclosed by the surface \(z = x{\sec ^2}y\)and the plane \(x = 0,x = 2,y = 0\& y = \frac{\pi }{4}\)
Given:- \(z = x{\sec ^2}y\)
To find:- Volume
All the tools & learning materials you need for study success - in one app.
Get started for freeSet up, but do not evaluate, integral expressions for
The hemisphere .\({{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}\text{+}{{\text{z}}^{\text{2}}}\text{1,z}\approx \text{0; }\!\!\rho\!\!\text{ (x,y,z)=}\sqrt{{{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}\text{+}{{\text{z}}^{\text{2}}}}\).
To sketch the solid whose volume is given by the iterated integral and evaluate it.
\(\int\limits_0^1 {\int\limits_x^1 {{e^{{x \mathord{\left/{\vphantom {x y}} \right.} y}}}dydx} }\)
Find the moment of inertia about the z -axis of the solid.
Find the volume of the solid that is enclosed by the cone \({\rm{z = }}\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} \) and the sphere \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 2}}\).Use cylindrical coordinates.
What do you think about this solution?
We value your feedback to improve our textbook solutions.