Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: The figure shows the region of integration for the integral

\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\int_{\rm{0}}^{{\rm{1 - x}}} {\rm{f}} } } {\rm{(x,y,z)dydzdx}}\)

Rewrite this integral as an equivalent iterated integral in the five other orders.

Short Answer

Expert verified

For the solution, look at your work.

Step by step solution

01

Concept Introduction

A multiple integral is a definite integral of a function of many real variables in mathematics (particularly multivariable calculus), such as f(x, y) or f(x, y) (x, y, z). Integrals of a two-variable function over a region

02

Explanation of the Solution

Simplify equivalent iterated integral in the five other orders.

Order 1:

\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\int_{\rm{0}}^{{\rm{1 - x}}} {\rm{f}} } } {\rm{(x,y,z)dydzdx = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - x}}} {\int_{\rm{0}}^{{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\rm{f}} } } {\rm{(x,y,z)dzdydx}}\)

Order 2:

\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\int_{\rm{0}}^{{\rm{1 - x}}} {\rm{f}} } } {\rm{(x,y,z)dydzdx = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{\sqrt {{\rm{1 - z}}} } {\int_{\rm{0}}^{{\rm{1 - x}}} {\rm{f}} } } {\rm{(x,y,z)dydxdz}}\)

Order 3:

\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\int_{\rm{0}}^{{\rm{1 - x}}} {\rm{f}} } } {\rm{(x,y,z)dydzdx = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\int_{\rm{0}}^{{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\rm{f}} } } {\rm{(x,y,z)dzdxdy}}\)

Order 4:

\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\int_{\rm{0}}^{{\rm{1 - x}}} {\rm{f}} } } {\rm{(x,y,z)dydzdx = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{2y - }}{{\rm{y}}^{\rm{2}}}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\rm{f}} } } {\rm{(x,y,z)dxdzdy + }}\int_{\rm{0}}^{\rm{1}} {\int_{{\rm{2y - }}{{\rm{y}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{\sqrt {{\rm{1 - y}}} } {\rm{f}} } } {\rm{(x,y,z)dxdzdy}}\)

Order 5:

\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\int_{\rm{0}}^{{\rm{1 - x}}} {\rm{f}} } } {\rm{(x,y,z)dydzdx = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - }}\sqrt {{\rm{1 - z}}} } {\int_{\rm{0}}^{\sqrt {{\rm{1 - z}}} } {\rm{f}} } } {\rm{(x,y,z)dxdydz + }}\int_{\rm{0}}^{\rm{1}} {\int_{{\rm{1 - }}\sqrt {{\rm{1 - z}}} }^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\rm{f}} } } {\rm{(x,y,z)dxdydz}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free