Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the volume of the solid enclosed by the surface \(z = 1 + {e^x}\sin y\) and the planes \(x = \pm 1,y = 0,y = \pi \& z = 0\)

Short Answer

Expert verified

Given:- \(z = 1 + {e^x}\sin y\)

\(x = \pm 1,y = 0,y = \pi \& z = 0\)

To find:- Volume

Step by step solution

01

Step (1):- Determining the Volume

\(\begin{array}{l}V = \int\limits_{ - 1}^1 {\int\limits_0^1 {\left( {1 + {e^x}\sin y} \right)dydx} } \\V = \int\limits_{ - 1}^1 {\left( {\int\limits_0^1 {\left( {1 + {e^x}\sin y} \right)dy} } \right)dx} \\V = \int\limits_{ - 1}^1 {\left( {y - {e^x}\cos y} \right)_0^\pi dx} \\V = \int\limits_{ - 1}^1 {\left( {\left( {\pi - {e^x}} \right) - \left( {0 - {e^x}} \right)} \right)dx} \\V = \int\limits_{ - 1}^1 {\left( {\pi + 2{e^x}} \right)dx} \\V = \left( {\pi x + 2{e^x}} \right)_{ - 1}^1\\V = \left( {\pi - 2e} \right) - \left( { - \pi + 2{e^{ - 1}}} \right)\\V = 2\pi + 2e - \frac{2}{e}\end{array}\)

Therefore, the volume of the solid is \(2\pi + 2e - \frac{2}{e}\) cubic units.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free