Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: The figure shows the region of integration for the integral \(\int_{\rm{0}}^{\rm{1}} {\int_{\sqrt {\rm{x}} }^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {{\rm{f(x,y,z)dzdydx}}} } } \)Rewrite this integral as an equivalent iterated integral in the five other orders.

Short Answer

Expert verified

The integrals are,

\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{{\rm{x}}^{\rm{2}}}} {\int_{\rm{0}}^{{\rm{1 - y}}} {{\rm{f(x,y,z)dzdxdy}}} } } \)

\(\begin{array}{l}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - }}\sqrt {\rm{x}} } {\int_{\sqrt {\rm{x}} }^{{\rm{1 - z}}} {{\rm{f(x,y,z)dydzdx}}} } } \\\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{{\left( {{\rm{1 - z}}} \right)}^{\rm{2}}}} {\int_{\sqrt {\rm{x}} }^{{\rm{1 - z}}} {{\rm{f(x,y,z)dydzdx}}} } } \end{array}\)

\(\begin{array}{l}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - z}}} {\int_{\rm{0}}^{{{\rm{y}}^{\rm{2}}}} {{\rm{f(x,y,z)dxdydz}}} } } \\\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\int_{\rm{0}}^{{{\rm{y}}^{\rm{2}}}} {{\rm{f(x,y,z)dxdzdy}}} } } \end{array}\)

Step by step solution

01

Define integral

In mathematics, an integral assigns numbers to functions to express displacement, area, volume, and other concepts arising from linking infinitesimal data.

02

Explanation on xy plane projection

Integration Region,

\({\rm{E = \{ (x,y,z)|0}} \le {\rm{x}} \le {\rm{1,}}\sqrt {\rm{x}} \le {\rm{y}} \le {\rm{1,0}} \le {\rm{z}} \le {\rm{1 - y\} }}\)

\({\rm{xy}}\) plane projection,

Then,

\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{{\rm{x}}^{\rm{2}}}} {\int_{\rm{0}}^{{\rm{1 - y}}} {{\rm{f(x,y,z)dzdxdy}}} } } \)

03

Explanation on xz plane projection

\({\rm{xz}}\) plane projection,

Then,

\(\begin{array}{l}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - }}\sqrt {\rm{x}} } {\int_{\sqrt {\rm{x}} }^{{\rm{1 - z}}} {{\rm{f(x,y,z)dydzdx}}} } } \\\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{{\left( {{\rm{1 - z}}} \right)}^{\rm{2}}}} {\int_{\sqrt {\rm{x}} }^{{\rm{1 - z}}} {{\rm{f(x,y,z)dydzdx}}} } } \end{array}\)

04

Explanation on yz plane projection

\({\rm{yz}}\) plane projection,

Then,

\(\begin{array}{l}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - z}}} {\int_{\rm{0}}^{{{\rm{y}}^{\rm{2}}}} {{\rm{f(x,y,z)dxdydz}}} } } \\\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\int_{\rm{0}}^{{{\rm{y}}^{\rm{2}}}} {{\rm{f(x,y,z)dxdzdy}}} } } \end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free