Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the volume of the given solid by subtracting two time the solid enclosed by the parabolic cylinders \(y = 1 - {x^2},z = {x^2} - 1\)and the planes \(x + y + z = 2,2x + 2y - z + 10 = 0\).

Short Answer

Expert verified

The volume of the given solid can be:

\(V = \frac{{16}}{3}\).

Step by step solution

01

Find the limits

Consider the cylinders \(y = 1 - {x^2},z = {x^2} - 1\)

Consider the planes\(x + y + z = 2,2x + 2y - z + 10 = 0\)

Two of the boundaries are normal to the plane\(z = 0\)so the region of integration should be in the plane\(z = 0\)and using z for the integrand.

In order to set up the integral it’s helpful to graph the region of integration.

It’s a type 1 region so the graph includes a vertical guide line in the middle.

The sketch of the region is shown below:

Notice that the vertical line begins at\(y = {x^2} - 1\)and ends at \(y = 1 - {x^2}\).

The line could slide as far left as\(x = - 1\)and as far right as \(x = 1\).

Postponing the question of the integration momentarily, the form and limits of integration can be set up as: \(v = \int\limits_{ - 1}^1 {\int\limits_{{x^2} - 1}^{1 - {x^2}} {({\mathop{\rm int}} egrand)dydx} } \)

The desired volume is bounded above and below by planes.

Solve each of the two bounding planes for z.

One id the plane\({z_1} = 2x + 2y + 10\)and second and other is\({z_2} = 2 - x - y\)

Note that on the region of integration.

Therefore the desired volume can be computed by independently computing the volume beneath each plane and then subtracting.

The formula is: \(v = \int\limits_{ - 1}^1 {\int\limits_{{x^2} - 1}^{1 - {x^2}} {{z_1}dydx} } - \int\limits_{ - 1}^1 {\int\limits_{{x^2} - 1}^{1 - {x^2}} {{z_2}dydx} } \)

02

Find the volume \({V_1}\) bounded by \({z_1}\)

\(\begin{aligned}{l}{V_1} = \int\limits_{ - 1}^1 {\int\limits_{{x^2} - 1}^{1 - {x^2}} {2x + 2y + 10dydx} } \\{V_1} = \int\limits_{ - 1}^1 {\left[ {2xy + 2\frac{{{y^2}}}{2} + 10y} \right]_{{x^2} - 1}^{1 - {x^2}}} dx\\{V_1} = \int\limits_{ - 1}^1 {\left[ {\left( {2x + 10} \right)y + {y^2}} \right]_{{x^2} - 1}^{1 - {x^2}}} dx\\{V_1} = \int\limits_{ - 1}^1 {\left[ {\left( {2x + 10} \right)\left( {1 - {x^2}} \right) + {{\left( {1 - {x^2}} \right)}^2} - \left( {2x + 10} \right)\left( {{x^2} - 1} \right) - {{\left( {{x^2} - 1} \right)}^2}} \right]} dx\\{V_1} = \int\limits_{ - 1}^1 {\left[ {\left( {2x - 2{x^3} + 10 - 10{x^2} + 1 - 2{x^2} + {x^4} - \left( {2{x^3} - 2x + 10{x^2} - 10 + {x^4} - 2{x^2} + 1} \right)} \right)} \right]} dx\\{V_1} = \int\limits_{ - 1}^1 {\left[ {\left( { - 4{x^3} - 20{x^2} + 4x + 20} \right)} \right]} dx\\{V_1} = 2\int\limits_0^1 {\left[ {\left( { - 20{x^2} + 20} \right)} \right]} dx\\{V_1} = 40\left[ { - \frac{1}{3}{x^3} + x} \right]_0^1\\{V_1} = \frac{{80}}{3}\end{aligned}\)

03

Find the volume \({V_2}\) bounded by \({z_2}\)

\(\begin{aligned}{l}{V_2} = \int\limits_{ - 1}^1 {\int\limits_{{x^2} - 1}^{1 - {x^2}} {2 - x - ydydx} } \\{V_2} = \int\limits_{ - 1}^1 {\left[ {2y - xy - \frac{{{y^2}}}{2}} \right]_{{x^2} - 1}^{1 - {x^2}}dx} \\{V_2} = \int\limits_{ - 1}^1 {\left[ {\left( {2\left( {1 - {x^2}} \right) - x\left( {1 - {x^2}} \right) - \frac{{{{\left( {1 - {x^2}} \right)}^2}}}{2}} \right) - \left( {2\left( {{x^2} - 1} \right) - x\left( {{x^2} - 1} \right) - \frac{{{{\left( {{x^2} - 1} \right)}^2}}}{2}} \right)} \right]dx} \\{V_2} = \int\limits_{ - 1}^1 {\left[ {\left( {2 - 2{x^2} - x + {x^3} - \frac{1}{2} + {x^2} - \frac{1}{2}{x^4} - \left( { - 2 + 2{x^2} + x - {x^3} - \frac{1}{2} - {x^2} + \frac{1}{2}{x^4}} \right)} \right)} \right]dx} \\{V_2} = \int\limits_{ - 1}^1 {\left[ {\left( {2{x^3} - 4{x^2} - 2x + 4} \right)} \right]dx} \\{V_2} = 2\int\limits_0^1 {\left[ {\left( { - 4{x^2} + 4} \right)} \right]dx} \\{V_2} = 8\left[ { - \frac{1}{3}{x^3} + x} \right]_0^1\\{V_2} = \frac{{16}}{3}\end{aligned}\)

04

Find the volume

\(\begin{aligned}{l}V = \frac{{80}}{3} - \frac{{16}}{3}\\V = \frac{{80 - 16}}{3}\\V = \frac{{64}}{3}\end{aligned}\)

Hence, The volume of the given solid can be evaluated as: \(V = \frac{{16}}{3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free