Chapter 12: Q30E (page 729)
Question: Express the integralas an iterated integral in six different ways, where \({\rm{E}}\) is the solid bounded by the given surfaces.
\({\rm{x = 2,y = 2,z = 0,x + y - 2z = 2}}\)
\({\rm{y = }}{{\rm{x}}^{\rm{2}}}{\rm{,z = 0,y + 2z = 4}}\).
Short Answer
The integrals are,
\(\begin{array}{l}\int_{\rm{0}}^{\rm{2}} {\int_{{\rm{2 - x}}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5(x + y - 2)}}} {{\rm{dzdydx}}} } } \\\int_{\rm{0}}^{\rm{2}} {\int_{{\rm{2 - y}}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5(x + y - 2)}}} {{\rm{dzdxdy}}} } } \end{array}\)
\(\begin{array}{l}\int_{\rm{0}}^{\rm{1}} {\int_{{\rm{2z}}}^{\rm{2}} {\int_{{\rm{2 - y + 2z}}}^{\rm{2}} {{\rm{dxdydz}}} } } \\\int_{\rm{0}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5y}}} {\int_{{\rm{2 - y + 2z}}}^{\rm{2}} {{\rm{dxdzdy}}} } } \end{array}\)
\(\begin{array}{l}\int_{\rm{0}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5x}}} {\int_{{\rm{2 - x + 2z}}}^{\rm{2}} {{\rm{dydzdx}}} } } \\\int_{\rm{0}}^{\rm{1}} {\int_{{\rm{2z}}}^{\rm{2}} {\int_{{\rm{2 - x + 2z}}}^{\rm{2}} {{\rm{dydxdz}}} } } \end{array}\)