Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Express the integralas an iterated integral in six different ways, where \({\rm{E}}\) is the solid bounded by the given surfaces.

\({\rm{x = 2,y = 2,z = 0,x + y - 2z = 2}}\)

\({\rm{y = }}{{\rm{x}}^{\rm{2}}}{\rm{,z = 0,y + 2z = 4}}\).

Short Answer

Expert verified

The integrals are,

\(\begin{array}{l}\int_{\rm{0}}^{\rm{2}} {\int_{{\rm{2 - x}}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5(x + y - 2)}}} {{\rm{dzdydx}}} } } \\\int_{\rm{0}}^{\rm{2}} {\int_{{\rm{2 - y}}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5(x + y - 2)}}} {{\rm{dzdxdy}}} } } \end{array}\)

\(\begin{array}{l}\int_{\rm{0}}^{\rm{1}} {\int_{{\rm{2z}}}^{\rm{2}} {\int_{{\rm{2 - y + 2z}}}^{\rm{2}} {{\rm{dxdydz}}} } } \\\int_{\rm{0}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5y}}} {\int_{{\rm{2 - y + 2z}}}^{\rm{2}} {{\rm{dxdzdy}}} } } \end{array}\)

\(\begin{array}{l}\int_{\rm{0}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5x}}} {\int_{{\rm{2 - x + 2z}}}^{\rm{2}} {{\rm{dydzdx}}} } } \\\int_{\rm{0}}^{\rm{1}} {\int_{{\rm{2z}}}^{\rm{2}} {\int_{{\rm{2 - x + 2z}}}^{\rm{2}} {{\rm{dydxdz}}} } } \end{array}\)

Step by step solution

01

Define integral

In mathematics, an integral assigns numbers to functions to express displacement, area, volume, and other concepts arising from linking infinitesimal data.

02

Explanation on xy plane projection

\({\rm{xy}}\) plane projection,

\(\begin{array}{l}{\rm{x = 2}}\\{\rm{y = 2}}\end{array}\)

\({\rm{x + y = 2}}\)

There are two methods to represent a bounded region.

\({\rm{R = \{ (x,y):0}} \le {\rm{x}} \le {\rm{2,2 - x}} \le {\rm{y}} \le {\rm{2\} }}\)

And

\({\rm{R = \{ (x,y):0}} \le {\rm{y}} \le {\rm{2,2 - y}} \le {\rm{x}} \le {\rm{2\} }}\)

\({\rm{z = 0}}\)and\({\rm{z = }}\frac{{{\rm{x + y - 2}}}}{{\rm{2}}}\)are the boundaries of coordinate\({\rm{z}}\).

In region\({\rm{Rx + y}} \ge {\rm{2}}\)for\({\rm{(x,y)}}\),

As a result,\({\rm{0}} \le {\rm{z}} \le \frac{{{\rm{x + y - 2}}}}{{\rm{2}}}\), solid\({\rm{E}}\)is given by,

\({\rm{E = }}\left\{ {{\rm{(x,y,z):0}} \le {\rm{x}} \le {\rm{2,2 - x}} \le {\rm{y}} \le {\rm{2,0}} \le {\rm{z}} \le \frac{{{\rm{x + y - 2}}}}{{\rm{2}}}} \right\}\)

And

\({\rm{E = }}\left\{ {{\rm{(x,y,z):0}} \le {\rm{y}} \le {\rm{2,2 - y}} \le {\rm{x}} \le {\rm{2,0}} \le {\rm{z}} \le \frac{{{\rm{x + y - 2}}}}{{\rm{2}}}} \right\}\)

Hence, the integrals that correspond to each other are,

\(\begin{array}{l}\int_{\rm{0}}^{\rm{2}} {\int_{{\rm{2 - x}}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5(x + y - 2)}}} {{\rm{dzdydx}}} } } \\\int_{\rm{0}}^{\rm{2}} {\int_{{\rm{2 - y}}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5(x + y - 2)}}} {{\rm{dzdxdy}}} } } \end{array}\)

03

Explanation on x plane projection

Plane \({\rm{x = 2}}\) projection,

\(\begin{array}{l}{\rm{z = 0,y = 2}}\\{\rm{y - 2z = 0}}\end{array}\)

There are two methods to represent a bounded region.

\({\rm{R = \{ (y,z):0}} \le {\rm{z}} \le {\rm{1,2z}} \le {\rm{y}} \le {\rm{2\} }}\)

And

\({\rm{R = \{ (y,z):0}} \le {\rm{y}} \le {\rm{2,0}} \le {\rm{z}} \le {\rm{0}}{\rm{.5y\} }}\)

\({\rm{x = 2}}\)and\({\rm{x = 2 - y + 2z}}\)are the boundaries of coordinate\({\rm{x}}\).

In region\({\rm{Ry - 2z}} \ge {\rm{0}}\)for\({\rm{(y,z)}}\),

As a result,\({\rm{2 - y + 2z}} \le {\rm{x}} \le {\rm{2}}\), solid\({\rm{E}}\)is given by,

\({\rm{E = }}\left\{ {{\rm{(x,y,z):0}} \le {\rm{z}} \le {\rm{1,2z}} \le {\rm{y}} \le {\rm{2,2 - y + 2z}} \le {\rm{x}} \le {\rm{2}}} \right\}\)

And

\({\rm{E = }}\left\{ {{\rm{(x,y,z):0}} \le {\rm{y}} \le {\rm{2,0}} \le {\rm{z}} \le {\rm{0}}{\rm{.5y,2 - y + 2z}} \le {\rm{x}} \le {\rm{2}}} \right\}\)

Hence, the integrals that correspond to each other are,

\(\begin{array}{l}\int_{\rm{0}}^{\rm{1}} {\int_{{\rm{2z}}}^{\rm{2}} {\int_{{\rm{2 - y + 2z}}}^{\rm{2}} {{\rm{dxdydz}}} } } \\\int_{\rm{0}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5y}}} {\int_{{\rm{2 - y + 2z}}}^{\rm{2}} {{\rm{dxdzdy}}} } } \end{array}\)

04

Explanation on y plane projection

Plane \({\rm{y = 2}}\) projection,

\(\begin{array}{l}{\rm{z = 0,x = 2}}\\{\rm{x - 2z = 0}}\end{array}\)

There are two methods to represent a bounded region.

\({\rm{R = \{ (x,z):0}} \le {\rm{x}} \le {\rm{2,0}} \le {\rm{z}} \le {\rm{0}}{\rm{.5x\} }}\)

And

\({\rm{R = \{ (x,z):0}} \le {\rm{z}} \le {\rm{1,2z}} \le {\rm{x}} \le {\rm{2\} }}\)

\({\rm{x = 2}}\)and\({\rm{x = 2 - y + 2z}}\)are the boundaries of coordinate\({\rm{x}}\).

In region\({\rm{Rx - 2z}} \ge {\rm{0}}\)for\({\rm{(x,z)}}\),

As a result,\({\rm{2 - x + 2z}} \le {\rm{y}} \le {\rm{2}}\), solid\({\rm{E}}\)is given by,

\({\rm{E = }}\left\{ {{\rm{(x,y,z):0}} \le {\rm{x}} \le {\rm{2,0}} \le {\rm{z}} \le {\rm{0}}{\rm{.5x,2 - x + 2z}} \le {\rm{y}} \le {\rm{2}}} \right\}\)

And

\({\rm{E = }}\left\{ {{\rm{(x,y,z):0}} \le {\rm{z}} \le {\rm{1,2z}} \le {\rm{x}} \le {\rm{2,2 - x + 2z}} \le {\rm{y}} \le {\rm{2}}} \right\}\)

Hence, the integrals that correspond to each other are,

\(\begin{array}{l}\int_{\rm{0}}^{\rm{2}} {\int_{\rm{0}}^{{\rm{0}}{\rm{.5x}}} {\int_{{\rm{2 - x + 2z}}}^{\rm{2}} {{\rm{dydzdx}}} } } \\\int_{\rm{0}}^{\rm{1}} {\int_{{\rm{2z}}}^{\rm{2}} {\int_{{\rm{2 - x + 2z}}}^{\rm{2}} {{\rm{dydxdz}}} } } \end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free