Chapter 12: Q2E (page 749)
Find the Jacobian of the transformation. \(\begin{array}{l}x = uv,\;\;\;\\y = u/v\end{array}\)
Short Answer
The Jacobian of the transformation is \( - \frac{{2u}}{v}\)
Chapter 12: Q2E (page 749)
Find the Jacobian of the transformation. \(\begin{array}{l}x = uv,\;\;\;\\y = u/v\end{array}\)
The Jacobian of the transformation is \( - \frac{{2u}}{v}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate \(\iiint_{\text{E}}{{{\text{x}}^{\text{2}}}}\text{dV}\), where \({\rm{E}}\) is the solid that lies within the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\), above the plane \({\rm{z = 0}}\), and below the cone \({{\rm{z}}^{\rm{2}}}{\rm{ = 4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{2}}}\).Use cylindrical coordinates.
Write the equations in cylindrical coordinates.
a. \({\rm{3x + 2y + z = 6}}\)
b. \({\rm{ - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{^{\rm{2}}}}{\rm{ = 1}}\)
Evaluate the double integral \(\iint\limits_D {xcosydA}\)D is bounded by\(y = 0,y = {x^2},x = 1\)
Let \({\rm{E}}\) be the solid in the first octant bounded by the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\) and the planes \({\rm{y = z, x = 0}}\)and \({\rm{z = 0}}\)with the density function \({\rm{\rho (x,y,z) = 1 + x + y + z}}\). Use a computer algebra system to find the exact values of the following quantities for \({\rm{E}}\).
Find the average value of the function\({\rm{f(x,y,z) = }}{{\rm{x}}^{\rm{2}}}{\rm{z + }}{{\rm{y}}^{\rm{2}}}{\rm{z}}\)over the region enclosed by the parabolic\({\rm{z = 1 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\)and the plane z=0.
What do you think about this solution?
We value your feedback to improve our textbook solutions.