Chapter 12: Q2E (page 707)
Evaluate the iterated integral \(\int\limits_0^1 {\int\limits_{2x}^2 {(x - y)dxdy} } \)
Short Answer
Value of integral is\(\left( { - 1} \right)\).
Chapter 12: Q2E (page 707)
Evaluate the iterated integral \(\int\limits_0^1 {\int\limits_{2x}^2 {(x - y)dxdy} } \)
Value of integral is\(\left( { - 1} \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the iterated integral\(\int\limits_0^1 {\int\limits_0^1 {\sqrt {s + t} {\rm{ }}} } dsdt\)
Evaluate the iterated integral \(\int_0^2 {\int_y^{2y} x } ydxdy\)
Evaluate\(\iiint_{\text{E}}{\sqrt{{{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}}}\text{dV}\), where \(E\) is enclosed by the planes \({\rm{z = 0}}\) and \({\rm{z = x + y + 5}}\) and by the cylinders \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 4}}\) and \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 9}}\).
\(\int\limits_0^1 {\int\limits_{\arcsin y}^{{\raise0.7ex\hbox{\(\pi \)} \!\mathord{\left/ {\vphantom{\pi 2}}\right.}\!\lower0.7ex\hbox{\(2\)}}} {\cos x\sqrt {1 + {{\cos }^2}x} dxdy} } \).
What do you think about this solution?
We value your feedback to improve our textbook solutions.