Now, using spherical coordinates, define our solid as follows:
\({\rm{E = }}\left\{ {{\rm{(\rho ,\theta ,}}\phi {\rm{)}}\mid {\rm{0}} \le {\rm{\rho }} \le {\rm{2,0}} \le {\rm{\theta }} \le {\rm{2\pi ,}}\frac{{\rm{\pi }}}{{\rm{4}}} \le \phi \le \frac{{\rm{\pi }}}{{\rm{2}}}} \right\}\)
Now it's time to figure out how big this solid is:
\(\iiint_{E}{~d}V=\int_{\frac{\pi }{4}}^{\frac{\pi }{2}}{\int_{0}^{2\pi }{\int_{0}^{2}{{{\rho }^{2}}}}}\sin \phi d\rho d\theta d\phi \)
To make the computation easier, separate the integrals.
\(\begin{aligned}\iiint_{E}{~d}V &=\int_{\frac{\pi }{4}}^{\frac{\pi }{2}}{\sin }\phi d\phi \int_{0}^{2\pi }{d}\theta \int_{0}^{2}{{{\rho }^{2}}}~d\rho \\ & =\left. (-\cos \phi ) \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}}\cdot (\theta )_{0}^{2\pi }\cdot \left( \frac{1}{3}{{\rho }^{3}} \right)_{0}^{2} \\ & =\left( \frac{1}{\sqrt{2}} \right)\cdot (2\pi )\cdot \left( \frac{8}{3} \right) \\ & =\left( \frac{\sqrt{2}}{2} \right)\cdot ()2\pi )\cdot \left( \frac{8}{3} \right) \end{aligned}\)
\(\iiint_{E}{~d}V=\frac{8\sqrt{2}}{3}\pi \)
Therefore, the volume of the solid is \(\frac{{{\rm{8}}\sqrt {\rm{2}} }}{{\rm{3}}}{\rm{\pi }}\).