Take a look at the \(z\)-axis. The bounds of \(z\)are as follows:
\({\rm{4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{2}}} \le {\rm{z}} \le {\rm{a}} \Rightarrow {\rm{4}}{{\rm{r}}^{\rm{2}}} \le {\rm{z}} \le {\rm{a}}\)
The following is the \(xy\)-plane region:
\(\begin{array}{c}{\rm{4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{2}}}{\rm{ = a}}\\{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = }}{\left( {\frac{{\sqrt {\rm{a}} }}{{\rm{2}}}} \right)^{\rm{2}}}\\{{\rm{r}}^{\rm{2}}}{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{\theta + }}{{\rm{r}}^{\rm{2}}}{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{\theta = }}{\left( {\frac{{\sqrt {\rm{a}} }}{{\rm{2}}}} \right)^{\rm{2}}}\\{\rm{r = }}\frac{{\sqrt {\rm{a}} }}{{\rm{2}}}\end{array}\)
As a result, the area in the \(xy\)plane is a circle with a radius of\(\frac{{\sqrt {\rm{a}} }}{{\rm{2}}}\). As a result, the \({\rm{r}}\)and \({\rm{\theta }}\)limitations are.
\(\begin{array}{c}{\rm{0}} \le {\rm{r}} \le \frac{{\sqrt {\rm{a}} }}{{\rm{2}}}\\{\rm{0}} \le {\rm{\theta }} \le {\rm{2\pi }}\end{array}\)
Because the solid is symmetric around the \(z\)-axis,
\({\rm{\bar x = \bar y = 0}}{\rm{.}}\)