Now we are ready to find the Jacobian.
\(\begin{aligned}\frac{{\partial (x,y)}}{{\partial (u,v)}} &= \left| {\begin{array}{*{20}{c}}{1/2}&{ - 1/2}\\{1/2}&{1/2}\end{array}} \right|\\ &= \frac{1}{2}\end{aligned}\)
Now based on the sketch we can easily evaluate the integral.
\(\begin{align}\iint_{R}{{{e}^{x+y}}}~dA&=\int_{1}^{1}{\int_{1}^{1}{{{e}^{u}}}}\left| \frac{1}{2} \right|du~dv \\ & =\left. \frac{1}{2}\int_{1}^{1}{{{e}^{u}}} \right|_{-1}^{1}dv \\ & =\frac{1}{2}\cdot \left( ev-\frac{v}{e} \right)_{-1}^{1} \\ & =\frac{1}{2}\cdot \left( e-\frac{1}{e}+e-\frac{1}{e} \right) \\ & =e-\frac{1}{e} \end{align}\)
Thus,the transformation is \(\int_{ - 1}^1 {\int_{ - 1}^1 {{e^u}} } \left| {\frac{1}{2}} \right|{\rm{d}}u\;{\rm{d}}v = e - \frac{1}{e}\)