Chapter 12: Q25E (page 735)
Sketch the solid whose volume is given by the iterated integral.\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - x}}} {\int_{\rm{0}}^{{\rm{2 - 2z}}} {{\rm{dydzdx}}} } } \).
Short Answer
The sketch of solid is drawn.
Chapter 12: Q25E (page 735)
Sketch the solid whose volume is given by the iterated integral.\(\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - x}}} {\int_{\rm{0}}^{{\rm{2 - 2z}}} {{\rm{dydzdx}}} } } \).
The sketch of solid is drawn.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the double integral by first identifying it as the volume of a solid., \(R = \left\{ {\left( {x,y} \right)/0 \le x \le 5,0 \le y \le 3} \right\}\)
Evaluate the iterated integral \(\int\limits_0^1 {\int\limits_{2x}^2 {(x - y)dxdy} } \)
Sketch the solid whose volume is given by the integrated integral
\(\int\limits_0^1 {\int\limits_0^1 {\left( {4 - x - 2y} \right)} } dxdy\)
\(\int\limits_0^1 {\int\limits_{\arcsin y}^{{\raise0.7ex\hbox{\(\pi \)} \!\mathord{\left/ {\vphantom{\pi 2}}\right.}\!\lower0.7ex\hbox{\(2\)}}} {\cos x\sqrt {1 + {{\cos }^2}x} dxdy} } \).
Sketch the solid whose volume is given by the integrated integral.
\(\int\limits_0^1 {\int\limits_0^1 {\left( {2 - {x^2} - {y^2}} \right)dydx} } \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.