Chapter 12: Q25E (page 708)
Find the volume of the given solid. Bounded by the coordinate planes and the planes \(3x + 2y + z = 6\)
Short Answer
The volume of the given solid can be:
\(V = 6\).
Chapter 12: Q25E (page 708)
Find the volume of the given solid. Bounded by the coordinate planes and the planes \(3x + 2y + z = 6\)
The volume of the given solid can be:
\(V = 6\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the volume of the solid that lies within both the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\) and sphere \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 4}}\).
Find the average value of the function \({\rm{f(x, y, z) = x y z}}\) over the cube with side length that lies in the first octant with one vertex at the origin and edges parallel to the coordinate axes.
Evaluate the double integral:\begin{gathered}\iint\limits_D {{x^3}dA,} \hfill \\D = \{ x,y)/1 \leqslant x \leqslant e,0 \leqslant y \leqslant lnx\} \hfill \\\end{gathered}
Calculate the iterated integral.
\(\int {_0^1\int {_1^2(4{x^3} - 9{x^2}{y^2})dydx} } \)
\(\int {\int\limits_D y dA} \).
What do you think about this solution?
We value your feedback to improve our textbook solutions.