Now, we know the substitution we are using is:
\(\begin{aligned}{{}{}}{}&\begin{aligned} u = y - x\\v = y + x\end{aligned}\\{}&\begin{aligned}y = \frac{{u + v}}{2}\\x = \frac{{v - u}}{2}\end{aligned}\end{aligned}\)
With
\((x,y) \in R\:{\rm{and}}\:;(u,v) \in D, - v \le u \le v\:{\rm{and}}\:1 \le v \le 2\)
Therefore:
\(\begin{aligned}\iint_{R}{{}}\cos \left( \frac{y-x}{y+x} \right) & \;=\iint_{D}{{}}\cos \left( \frac{u}{v} \right)\cdot \frac{1}{2}dA \\{} & \;=\int_{1}^{2}{{}}\int_{-v}^{v}{{}}\cos \left( \frac{u}{v} \right)\cdot \frac{1}{2}dudv \\{} & \;=\frac{1}{2}\int_{1}^{2}{{}}\left( v\sin \frac{u}{v} \right)_{-v}^{v}dv \\{} & \;=\frac{1}{2}\int_{1}^{2}{{}}2\sin (1)vdv \\{} & \;=\sin (1)\int_{1}^{2}{{}}vdv \\{} & \;=\sin (1)\left( \frac{{{v}^{2}}}{2} \right)_{1}^{2} \\{} & \;=\frac{3}{2}\sin (1) \\\end{aligned}\)
Thus, the value of the integral \({\iint }_{R}\cos \left( \frac{y-x}{y+x} \right)dA\) is\(\frac{3}{2}\sin (1)\)