Notice that \(0 \le x \le 2\) which means that x=0 and x=2 are the lower and upper limits of integration of x respectively, and \(0 \le y \le 3\), which means that y=0 and y=3 are the lower and upper limits of integration of y respectively.
Integrating the function f(x,y)=\(y{e^{ - xy}}\)with respect to x from 0 to 2 and holding y as a constant.
\(\begin{array}{l}\int {\int\limits_R {y{e^{ - xy}}dA = \int\limits_0^3 {\left( {\int\limits_0^2 {y{e^{ - xy}}dx} } \right)dy} } } \\\int\limits_0^3 {\left( {y\frac{{{e^{ - xy}}}}{{\left( { - y} \right)}}} \right)_{x = 0}^2dy} \\\int\limits_0^3 {\left( { - {e^{ - xy}}} \right)} _{x = 0}^2dy\\\int\limits_0^3 {\left( { - {e^{ - xy}} + 1} \right)dy} \\\left( {\frac{{ - {e^{ - 2y}}}}{{ - 2}} + y} \right)_0^3\\\left( {\frac{1}{2}\frac{{{e^{ - 2y}}}}{{ - 2}} + y} \right)_0^3\\\frac{1}{2}{e^{ - 6}} + 3 - \frac{1}{2}\\\frac{1}{2}\left( {{e^{ - 6}} + 5} \right)\end{array}\)
Therefore, integral of the given function is,
\(\frac{1}{2}\left( {{e^{ - 6}} + 5} \right)\).