- If the density is constant, the total mass is calculated by multiplying the volume of portion a) by constant \({\rm{k}}\)
The total mass is transformed into \({\rm{m = 162k\pi }}\)
Then, take advantage of the fact that the region is symmetric in the plane \({\rm{x y}}\) surrounding the
circle
Because the density is constant, so deduce that
\({{\rm{M}}_{{\rm{yz}}}}{\rm{ = }}{{\rm{M}}_{{\rm{xz}}}}{\rm{0}}\)
Now figure out what occurs with the coordinate \({\rm{z}}\)
\(\begin{aligned}{{\rm{M}}_{{\rm{xy}}}}\rm &= \int_{\rm{0}}^{\rm{3}} {\int_{\rm{0}}^{{\rm{2\pi }}} {\int_{{{\rm{r}}^{\rm{2}}}}^{{\rm{36 - 3}}{{\rm{r}}^{\rm{2}}}} {{\rm{krdrd\theta dr}}} } } \\\rm &= \int_{\rm{0}}^{\rm{3}} {\int_{\rm{0}}^{{\rm{2\pi }}} {\frac{{{\rm{8kr - 216k}}{{\rm{r}}^{\rm{3}}}{\rm{ + 1295kr}}}}{{\rm{2}}}} } {\rm{d\theta dr}}\\\rm &= 2430\pi k\end{aligned}\)
Finally, the mass coordinates' centre is:
\({\rm{(0,0,15)}}\)
Therefore, the centroid of \({\rm{E = (0,0,15)}}\)