Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the volume of the solid that lies between the paraboloid \({\rm{z = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\)and the sphere \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 2}}\).

Short Answer

Expert verified

The volume of the solid is \(\left( {\frac{{{\rm{8}}\sqrt {\rm{2}} {\rm{ - 7}}}}{{\rm{6}}}} \right){\rm{\pi }}\).

Step by step solution

01

Find the volume of the solid.    

Paraboloid: \({\rm{z = }}{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}\) or \({\rm{z = }}{{\rm{r}}^{\rm{2}}}\)

Sphere: \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 2}}\) or \({\rm{z = }}\sqrt {{\rm{2 - }}{{\rm{r}}^{\rm{2}}}} \)

NOTE: The bottom bound is paraboloid, while the upper bound is the top section of the sphere.

When it comes to integration, \({{\rm{r}}^{\rm{2}}}{\rm{ = }}\sqrt {{\rm{2 - }}{{\rm{r}}^{\rm{2}}}} \)

Solving for \({\rm{r}}\) gives us \({\rm{r = 1}}\). This is a circle with a radius of one.

So, \({\rm{0}} \le {\rm{r}} \le {\rm{1}}\)and\(0 \le \theta \le 2\pi \)

\(\int_{\rm{0}}^{{\rm{2\pi }}} {\int_{\rm{0}}^{\rm{1}} {\int_{{{\rm{r}}^{\rm{2}}}}^{\sqrt {{\rm{2 - }}{{\rm{r}}^{\rm{2}}}} } {\rm{r}} } } {\rm{dzdrd\theta }}\)

Let's start with \(dz\):

\(\begin{aligned}\int_{{{\rm{r}}^{\rm{2}}}}^{\sqrt {{\rm{2 - }}{{\rm{r}}^{\rm{2}}}} } {\rm{r}} \rm dz &= r\left( {\sqrt {{\rm{2 - }}{{\rm{r}}^{\rm{2}}}} {\rm{ - }}{{\rm{r}}^{\rm{2}}}} \right)\\\rm &= r\sqrt {{\rm{2 - }}{{\rm{r}}^{\rm{2}}}} {\rm{ - }}{{\rm{r}}^{\rm{3}}}\end{aligned}\)

02

Step 2:Evaluate the equation.

Now, \({\rm{dr}}\)

\(\int_{\rm{0}}^{\rm{1}} {\rm{r}} \sqrt {{\rm{2 - }}{{\rm{r}}^{\rm{2}}}} {\rm{ - }}{{\rm{r}}^{\rm{3}}}{\rm{dr = }}\int_{\rm{0}}^{\rm{1}} {\rm{r}} \sqrt {{\rm{2 - }}{{\rm{r}}^{\rm{2}}}} {\rm{dr - }}\int_{\rm{0}}^{\rm{1}} {{{\rm{r}}^{\rm{3}}}} {\rm{dr}}\)

Let's start with \({\rm{(1) - (2):}}\)

\(\begin{aligned} &\Rightarrow \rm (l) = \int_{\rm{0}}^{\rm{1}} {\rm{r}} \sqrt {{\rm{2 - }}{{\rm{r}}^{\rm{2}}}} {\rm{dr}}\\ &\Rightarrow \rm (2) = \int_{\rm{0}}^{\rm{1}} {{{\rm{r}}^{\rm{3}}}} {\rm{dr}}\end{aligned}\)

Use a u-substitution for (l). \(^*\) Don't forget to adjust the boundaries if necessary. \({\rm{du = - 2rdr}}\) and\({\rm{u = 2 - }}{{\rm{r}}^{\rm{2}}}\).

Note: \( - \int_{\rm{b}}^{\rm{a}} {\rm{ = }} \int_a^b {} \)

\(\begin{aligned}{\rm{ - }}\int_{\rm{2}}^{\rm{1}} {\frac{{\sqrt {\rm{u}} }}{{\rm{2}}}} \rm du &= \int_{\rm{1}}^{\rm{2}} {\frac{{\sqrt {\rm{u}} }}{{\rm{2}}}} {\rm{du}}\\ \rm &= \left( {\frac{{{{\rm{u}}^{{\rm{3/2}}}}}}{{\rm{3}}}} \right)_{\rm{1}}^{\rm{2}}\\ \rm &= \frac{{{\rm{2}}\sqrt {\rm{2}} {\rm{ - 1}}}}{{\rm{3}}}\end{aligned}\)

Now, \({\rm{(2)}}\) is a small thing.

\(\begin{aligned}\int_{\rm{0}}^{\rm{1}} {{{\rm{r}}^{\rm{3}}}} \rm dr &= \frac{{\rm{1}}}{{\rm{4}}}\\\rm (1) - (2) &= \frac{{{\rm{8}}\sqrt {\rm{2}} {\rm{ - 7}}}}{{{\rm{12}}}}\end{aligned}\)

Let's finish with \({\rm{d\theta }}\).

\(\begin{aligned}\int_{\rm{0}}^{{\rm{2\pi }}} {\frac{{{\rm{8}}\sqrt {\rm{2}} {\rm{ - 7}}}}{{{\rm{12}}}}} \rm d\theta &= \left( {\frac{{{\rm{8}}\sqrt {\rm{2}} {\rm{ - 7}}}}{{{\rm{12}}}}} \right){\rm{(\theta )}}_{\rm{0}}^{{\rm{2\pi }}}\\\rm &= \left( {\frac{{{\rm{8}}\sqrt {\rm{2}} {\rm{ - 7}}}}{{{\rm{12}}}}} \right){\rm{2\pi }}\\\rm &= \left( {\frac{{{\rm{8}}\sqrt {\rm{2}} {\rm{ - 7}}}}{{\rm{6}}}} \right){\rm{\pi }}\end{aligned}\)

Therefore, the volume of the solid is \(\left( {\frac{{{\rm{8}}\sqrt {\rm{2}} {\rm{ - 7}}}}{{\rm{6}}}} \right){\rm{\pi }}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free