Chapter 12: Q24-E (page 720)
Find the volume of the given solid. Enclosed by the paraboloid \(z = {x^2} + 3{y^2}\)and the planes \(x = 0,y = 1,y = x,z = 0\)
Short Answer
The volume of the given solid can be:
\(V = \frac{5}{6}\).
Chapter 12: Q24-E (page 720)
Find the volume of the given solid. Enclosed by the paraboloid \(z = {x^2} + 3{y^2}\)and the planes \(x = 0,y = 1,y = x,z = 0\)
The volume of the given solid can be:
\(V = \frac{5}{6}\).
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int\limits_0^1 {\int\limits_x^1 {{e^{{x \mathord{\left/{\vphantom {x y}} \right.} y}}}dydx} }\)
Find the volume of the solid enclosed by the surface \(z = 1 + {e^x}\sin y\) and the planes \(x = \pm 1,y = 0,y = \pi \& z = 0\)
Calculate the double integral
\(\int {\int\limits_R {\left( {y + x{y^{ - 2}}} \right)} dA,R = \{ \left( {x,y} \right)|0 \le x \le 2,1 \le y \le 2\} } \)
Evaluate \(\iiint_{\text{E}}{{{\text{x}}^{\text{2}}}}\text{dV}\), where \({\rm{E}}\) is the solid that lies within the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\), above the plane \({\rm{z = 0}}\), and below the cone \({{\rm{z}}^{\rm{2}}}{\rm{ = 4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{2}}}\).Use cylindrical coordinates.
Find the volume of the solid that lies within both the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\) and sphere \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 4}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.