Let's start by figuring out \({\rm{\Delta V}}\). We'll put our points at the following locations since we'll need \({\rm{8}}\)sub-boxes.
\(\left( {\frac{{\rm{1}}}{{\rm{2}}}{\rm{,0,0}}} \right)\left( {{\rm{0,}}\frac{{\rm{1}}}{{\rm{2}}}{\rm{,0}}} \right)\left( {{\rm{0,0,}}\frac{{\rm{1}}}{{\rm{2}}}} \right)\)
As a result, we arrive to the following conclusions,\({\rm{l = m = n = 2}}\)and
\(\begin{array}{c}{\rm{\Delta V = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times }}\frac{{\rm{1}}}{{\rm{2}}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{8}}}\end{array}\)
Let's write down the Midpoint Rule and apply it,

As a result, we arrive to the following conclusion,
\(\begin{array}{c}{\rm{ = }}\frac{{\rm{1}}}{{\rm{8}}}\left( {{\rm{cos}}\frac{{\rm{1}}}{{{\rm{64}}}}{\rm{ + cos}}\frac{{\rm{3}}}{{{\rm{64}}}}{\rm{ + cos}}\frac{{\rm{3}}}{{{\rm{64}}}}{\rm{ + cos}}\frac{{\rm{9}}}{{{\rm{64}}}}{\rm{ + cos}}\frac{{\rm{3}}}{{{\rm{64}}}}{\rm{ + cos}}\frac{{\rm{9}}}{{{\rm{64}}}}{\rm{ + cos}}\frac{{\rm{9}}}{{{\rm{64}}}}{\rm{ + cos}}\frac{{{\rm{27}}}}{{{\rm{64}}}}} \right)\\ \approx {\rm{0}}{\rm{.985}}\end{array}\)
Therefore, the value of the integral is \( \approx {\rm{0}}{\rm{.985}}\).