Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the volume of the solid that is enclosed by the cone \({\rm{z = }}\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} \)and the sphere \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 2}}\).

Short Answer

Expert verified

Respectfully integrate \(\frac{{{\rm{1688\pi }}}}{{{\rm{15}}}}.\)

Step by step solution

01

Step1:The spherical coordinates triple integration formula.

\(_E\mathop f\limits_d (x,y,z) = {\text{ }}_{ca}^\alpha f(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi ){\left( \rho \right)^2}\sin \phi d\rho d\theta d\phi \)

\({\rm{E = (\rho ,\theta ,}}\phi {\rm{)}}\mid {\rm{a}} \le {\rm{\rho }} \le {\rm{b,\alpha }} \le {\rm{\theta }} \le {\rm{\beta ,c}} \le {\rm{f}} \le {\rm{d}}\)

Define the integration region in the following manner using the supplied integral.

\(\begin{aligned}\int_{\rm{0}}^{\rm{\pi }} {\int_{\rm{0}}^{{\rm{2\pi }}} {\;\;\;} } {\rm{3(\rho sin}}\phi {\rm{cos\theta }}{{\rm{)}}^{\rm{2}}}{\rm{ + (\rho sin}}\phi {\rm{sin\theta }}{{\rm{)}}^{\rm{2}}}{{\rm{\rho }}^{\rm{2}}}{\rm{sin}}\phi {\rm{d\rho d\theta d}}\phi \rm &= \rho _{\rm{0}}^{\rm{2}}{\rm{si}}{{\rm{n}}^{\rm{2}}}\phi {\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{\theta + si}}{{\rm{n}}^{\rm{2}}}{\rm{\theta }}\;\;\;{{\rm{\rho }}^{\rm{2}}}{\rm{sin}}\phi {\rm{d\rho d\theta d}}\phi \\&\begin{array}{*{20}{r}}{\rm{0}}&{\rm{0}}&{\rm{2}}\\{\rm{\pi }}&{{\rm{2\pi }}}&{\rm{3}}\end{array}\\\rm &= _{\rm{0}}{\rm{0}}_{{\rm{2\pi }}}^{\rm{2}}{{\rm{\rho }}^{\rm{2}}}{\rm{si}}{{\rm{n}}^{\rm{2}}}\phi {\rm{ * }}{{\rm{\rho }}^{\rm{2}}}{\rm{sin}}\phi {\rm{d\rho d\theta d}}\phi \\\rm &= {\int_{\rm{0}}^{\rm{\pi }} {\;\;\;} _{\rm{2}}}\;\;\;{{\rm{\rho }}^{\rm{4}}}{\rm{si}}{{\rm{n}}^{\rm{3}}}\phi {\rm{d\rho d\theta d}}\phi {\rm{.}}\end{aligned}\)

02

Step2:Can now assess the integral.

\(\begin{aligned}&= \int_0^\pi {_0^{2\pi }} \frac{{{3^5}}}{5} - \frac{{{2^5}}}{5}{\sin ^3}fd\theta df \\&= \frac{{211}}{5}\theta _0^{2\pi }{}_0^\pi {\sin ^3}fdf \\ &= \frac{{422\pi }}{5}\int_0^\pi {{{\sin }^3}} fdf. \\\end{aligned} \)

Taking Advantage of Trigonometric Identities

\(\frac{{{\rm{422\pi }}}}{{\rm{5}}}\int_{\rm{0}}^{\rm{\pi }} {{\rm{si}}{{\rm{n}}^{\rm{3}}}} \phi {\rm{d}}\phi {\rm{ = }}\frac{{{\rm{422\pi }}}}{{\rm{5}}}\int_{\rm{0}}^{\rm{\pi }} {{\rm{sin}}} \phi {\rm{1 - co}}{{\rm{s}}^{\rm{2}}}\phi \;\;{\rm{d}}\phi {\rm{.}}\)

\(\begin{aligned}\frac{{{\rm{422\pi }}}}{{\rm{5}}}_{\rm{1}}^{{\rm{ - 1}}}{\rm{ - 1 - }}{{\rm{k}}^{\rm{2}}}\;\;\;\rm dk &= \frac{{{\rm{422\pi }}}}{{\rm{5}}}\;\;\;{\rm{1 - }}{{\rm{k}}^{\rm{2}}}{\rm{dk}}\\\rm &= \frac{{{\rm{422\pi }}}}{{\rm{5}}}\;\;\;{\rm{k - }}\frac{{{{\rm{k}}^{\rm{3}}}}}{{\rm{3}}}\;\;\;\frac{{\rm{1}}}{{{\rm{ - 1}}}}\\\rm &= \frac{{{\rm{422\pi }}}}{{\rm{5}}}\;\;\;{\rm{1 - ( - 1) - }}\frac{{\rm{1}}}{{\rm{3}}}{\rm{ - }}\;\;\;{\rm{ - }}\frac{{\rm{1}}}{{\rm{3}}}\\\rm &= \frac{{{\rm{422\pi }}}}{{\rm{5}}}\;\;\;{\rm{2 - }}\frac{{\rm{2}}}{{\rm{3}}}\\\rm &= \frac{{{\rm{1688\pi }}}}{{{\rm{15}}}}\end{aligned}\)

Consequently, the integral becomes \(\frac{{{\rm{1688\pi }}}}{{{\rm{15}}}}.\)\(\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free