Chapter 12: Q22E (page 729)
Question: (a) In the Midpoint Rule for triple integrals we use a triple Riemann sum to approximate a triple integral over a box \({\rm{B}}\), where \({\rm{f(x,y,z)}}\) is evaluated at the center \({\rm{(}}\overline {{{\rm{x}}_{\rm{i}}}} {\rm{,}}\overline {{{\rm{y}}_{\rm{j}}}} {\rm{,}}\overline {{{\rm{z}}_{\rm{k}}}} {\rm{)}}\) of the box \({{\rm{B}}_{{\rm{ijk}}}}\) . Use the Midpoint Rule to estimate, where \({\rm{B}}\) is the cube defined by \({\rm{0}} \le {\rm{x}} \le {\rm{4,0}} \le {\rm{y}} \le {\rm{4,0}} \le {\rm{z}} \le {\rm{4}}\). Divide \({\rm{B}}\) into eight cubes of equal size.
(b) Use a computer algebra system to approximate the integral in part (a) correct to the nearest integer. Compare with the answer to part (a).
Short Answer
- The value of
- The value is \({\rm{246}}\).