b. \({\rm{V = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{\rm{x}} {\int_{\rm{0}}^{\sqrt {{\rm{1 - }}{{\rm{y}}^{\rm{2}}}} } {{\rm{dzdydx}}} } } \)
With respect to\({\rm{z}}\), integrate.
\(\begin{array}{c}{\rm{V = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{\rm{x}} {{\rm{z|}}_{\rm{0}}^{\sqrt {{\rm{1 - }}{{\rm{y}}^{\rm{2}}}} }} } {\rm{dydx}}\\{\rm{V = }}\int_{\rm{0}}^{\rm{1}} {\int_{\rm{0}}^{\rm{x}} {\sqrt {{\rm{1 - }}{{\rm{y}}^{\rm{2}}}} } } {\rm{dydx}}\end{array}\)
Apply formula 30 from the Table of Integrals at the back of the book to integrate with respect to y, using a = 1.
\(\begin{array}{c}{\rm{V = }}\int_{\rm{0}}^{\rm{1}} {\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{y}}\sqrt {{\rm{1 - }}{{\rm{y}}^{\rm{2}}}} {\rm{ + si}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{y}}} \right)} {\rm{|}}_{\rm{0}}^{\rm{x}}{\rm{dx}}\\{\rm{V = }}\int_{\rm{0}}^{\rm{1}} {\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{x}}\sqrt {{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\rm{ + si}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{x}}} \right)} {\rm{dx}}\end{array}\)
Dividing the integral into two parts and integrating each individually,
\({\rm{V = }}\int_{\rm{0}}^{\rm{1}} {\frac{{\rm{1}}}{{\rm{2}}}{\rm{x}}\sqrt {{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\rm{dx + }}\int_{\rm{0}}^{\rm{1}} {\frac{{\rm{1}}}{{\rm{2}}}{\rm{si}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{x}}} } {\rm{dx}}\)
Using a u-substitution, integratethe left-hand part,
\(\begin{array}{c}\int_{\rm{0}}^{\rm{1}} {\frac{{\rm{1}}}{{\rm{2}}}{\rm{x}}\sqrt {{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\rm{dx}}} \\{\rm{u = 1 - }}{{\rm{x}}^{\rm{2}}}\\{\rm{du = - 2xdx}}\\\int_{\rm{1}}^{\rm{0}} {\frac{{{\rm{ - 1}}}}{{\rm{4}}}\sqrt {\rm{u}} {\rm{du = }}\int_{\rm{0}}^{\rm{1}} {\frac{{\rm{1}}}{{\rm{4}}}\sqrt {\rm{u}} } {\rm{du}}} \\\frac{{\rm{1}}}{{\rm{6}}}{{\rm{u}}^{{\rm{3/2}}}}{\rm{|}}_{\rm{0}}^{\rm{1}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{6}}}\end{array}\)
Apply formula 87 from the Table of Integrals to the right-hand portion to integrate it,
\(\begin{array}{l}\int_{\rm{0}}^{\rm{1}} {\frac{{\rm{1}}}{{\rm{2}}}{\rm{si}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{xdx}}} \\\frac{{\rm{1}}}{{\rm{2}}}{\rm{(x \times si}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{x + }}\sqrt {{\rm{1 - }}{{\rm{x}}^{\rm{2}}}} {\rm{)|}}_{\rm{0}}^{\rm{1}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{\pi - }}\frac{{\rm{1}}}{{\rm{2}}}\end{array}\)
To get the entire volume, add the two parts together,
\(\begin{array}{c}{\rm{V = }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{ + }}\left( {\frac{{\rm{1}}}{{\rm{4}}}{\rm{\pi - }}\frac{{\rm{1}}}{{\rm{2}}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{\pi - }}\frac{{\rm{1}}}{{\rm{3}}}\end{array}\)
Therefore, the volume is \(\frac{{\rm{1}}}{{\rm{4}}}{\rm{\pi - }}\frac{{\rm{1}}}{{\rm{3}}}\).