The moment of inertia of the solid about theaxis will be
Now we use the transformation
\(\begin{array}{l}\;y = bv\\z = cw\end{array}\) \(\)
Hence the Jacobian \(\begin{array}{l}J = \left| {\frac{{\partial (x,y,z)}}{{\partial (u,v,w)}}} \right|\\ = abc\end{array}\)
So we now have,
Again substituting
\(\begin{array}{l}v = r\sin \theta sin\phi ,\\w = r\cos {\rm{\backslash }}\phi .\end{array}\)
Hence the Jacobian
\(\begin{array}{l}J = \left| {\frac{{\partial (u,v,w)}}{{\partial (r,\theta ,\phi )}}} \right|\\ = {r^2}\sin \phi \end{array}\)