Chapter 12: Q21E (page 708)
Find the volume of the given solid. under the plane \(x - 2y + z = 1\)and above the region bounded by \(x + y = 1\)and\({x^2} + y = 1\)
Short Answer
The volume of the given solid can be:
\(V = \frac{{17}}{{60}}\).
Chapter 12: Q21E (page 708)
Find the volume of the given solid. under the plane \(x - 2y + z = 1\)and above the region bounded by \(x + y = 1\)and\({x^2} + y = 1\)
The volume of the given solid can be:
\(V = \frac{{17}}{{60}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the solid whose volume is given by the integrated integral.
\(\int\limits_0^1 {\int\limits_0^1 {\left( {2 - {x^2} - {y^2}} \right)dydx} } \)
Write the equations in cylindrical coordinates.
a. \({{\rm{x}}^{\rm{2}}}{\rm{ - x + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 1}}\)
b.\({\rm{z}} = {{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\)
Evaluate \(\iiint_{\text{E}}{\text{(x+y+z)}}\text{dV}\) , where \({\rm{E}}\) is the solid in the first octant that lies under the paraboloid \({\rm{z = 4 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\). Use cylindrical coordinates.
\(\int\limits_0^{\sqrt \pi } {\int\limits_y^{\sqrt \pi } {cos({x^2})} dxdy} \)
Find the volume of the solid in the first octant bounded by the cylinder\({z^2} = 16 - {x^2}\)and the plane\(y = 5\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.