Chapter 12: Q21E (page 714)
Find the area of the region using double integral.
Short Answer
The area of the region is \(\frac{\pi }{{12}}\).
Chapter 12: Q21E (page 714)
Find the area of the region using double integral.
The area of the region is \(\frac{\pi }{{12}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeThe average value of a function\({\bf{f}}\left( {{\bf{x,y}}} \right)\)over a rectangle\({\bf{R}}\)is defined to be,
\({{\bf{f}}_{{\bf{ave}}}}{\bf{ = }}\frac{{\bf{1}}}{{{\bf{A}}\left( {\bf{R}} \right)}}\int {\int\limits_{\bf{R}} {{\bf{f}}\left( {{\bf{x,y}}} \right)} } {\bf{dA}}\)
Find the average value of\({\bf{f}}\)over the given rectangle.
\({\bf{f}}\left( {{\bf{x,y}}} \right){\bf{ = }}{{\bf{x}}^{\bf{2}}}{\bf{y}}\)
\({\bf{R}}\)has vertices\(\left( {{\bf{ - 1,0}}} \right){\bf{,}}\left( {{\bf{ - 1,5}}} \right){\bf{,}}\left( {{\bf{1,5}}} \right){\bf{,}}\left( {{\bf{1,0}}} \right)\).
Set up, but do not evaluate, integral expressions for
The solid of exercise 19; \({\rm{\rho (x,y,z) = }}\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} \).
Find the average value of the function\({\rm{f(x,y,z) = }}{{\rm{x}}^{\rm{2}}}{\rm{z + }}{{\rm{y}}^{\rm{2}}}{\rm{z}}\)over the region enclosed by the parabolic\({\rm{z = 1 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\)and the plane z=0.
Set up, but do not evaluate, integral expressions for
The hemisphere.
Find the volume of the solid in the first octant bounded by the cylinder\({z^2} = 16 - {x^2}\)and the plane\(y = 5\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.