The formula for triple integration in spherical coordinates:
\(\iiint_{E}{f}(x,y,z)=\int_{c}^{d}{\int_{\alpha }^{\beta }{\int_{a}^{b}{f}}}(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi ){{\rho }^{2}}\sin \phi d\rho d\theta d\phi \).
E is a spherical wedge indicated by
\(E = \{ (\rho ,\theta ,\phi )\mid a \le \rho \le b,\alpha \le \theta \le \beta ,c \le \phi \le d\} \).
The region of integration can be defined in the following way using the given integral:
\({\rm{B = \{ (\rho ,}}\theta ,\phi )\mid 0 \le \rho \le {\rm{5,0}} \le \theta \le {\rm{2\pi ,0}} \le \phi \le {\rm{\pi \} }}\)
Using \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = }}{{\rm{\rho }}^{\rm{2}}}\)
\(\int_0^\pi {\int_0^{2\pi } {\int_0^5 {{{\left( {{\rho ^2}} \right)}^2}} } } {\rho ^2}\sin \phi d\rho d\theta d\phi = \int_0^\pi {\int_0^{2\pi } {\int_0^5 {{\rho ^6}} } } \sin \phi d\rho d\theta d\phi \).