Obtain the moment of inertia \({I_y}\) as follows:
Integrate with respect to \(y\) and apply the limit.
\(\begin{aligned}{c}{I_y} = \left. {\int_0^2 {\left( {{x^2} + 0.1{x^3}} \right)} (y)} \right)_0^2dx\\{I_y} = \int_0^2 {\left( {\left( {{x^2} + 0.1{x^3}} \right)(2 - 0)} \right)} dx\\ = \int_0^2 {\left( {\left( {{x^2} + 0.1{x^3}} \right)(2)} \right)} dx\\ = 2\int_0^2 {\left( {{x^2} + 0.1{x^3}} \right)} dx\end{aligned}\)
Integrate with respect to \(y\) and apply the limit.
\(\begin{aligned}{c}{I_y} = 2\left( {\frac{{{x^3}}}{3} + \frac{{0.1{x^4}}}{4}} \right)_0^2\\ = 2\left( {\left( {\frac{{{{(2)}^3}}}{3} + \frac{{0.1{{(2)}^4}}}{4}} \right) - \left( {\frac{{{{(0)}^3}}}{3} + \frac{{0.1{{(0)}^4}}}{4}} \right)} \right)\\ = 2\left( {\left( {\frac{8}{3} + \frac{{0.1(16)}}{4}} \right) - (0 + 0)} \right)\\ = 2\left( {\frac{8}{3} + \frac{{1.6}}{4}} \right)\end{aligned}\)
On further simplification, the value of \({I_y}\) becomes:
\(\begin{aligned}{c}{I_y} = 2\left( {\frac{{8(4) + 1.6(3)}}{{12}}} \right)\\ = 2\left( {\frac{{32 + 4.8}}{{12}}} \right)\\ = 2(3.07)\\ \approx 6.13\end{aligned}\)